唉,年紀大了,有老花 ...
第 2 題
設\(P\)為\(\Delta ABC\)的\(BC\)邊上一點,且\(\overline{PB}=\overline{AC}=a\),若\(\displaystyle\angle BAP=\frac{1}{3}\angle PAC=30^{\circ}\),則\(\overline{PC}=\)
。
[解答]
PC = x
AP = √(x^2 - a^2)
△ABC = (1/2) * AB * a * sin120度
△ABP = (1/2) * AB * √(x^2 - a^2) * sin30度
利用 △ABC / △ABP = (x + a) / a 即可求出
113.2.2補充
In the diagram line segments \(AB\) and \(CD\) are of length 1 while angles \(ABC\) and \(CBD\) are \(90^{\circ}\) and \(30^{\circ} \)respectively. Find \(AC\).
(1986Canadian Mathematical Olympiad,
https://cms.math.ca/competitions/cmo/)
113.5.13補充
\(\Delta ABC\)中,\(D\)在\(\overline{BC}\)上,其中\(\overline{AB}=\overline{CD}\),\(\angle CAD=30^{\circ}\)、\(\angle BAD=90^{\circ}\),則\(secB=\)
。
(107北一女中,
https://math.pro/db/viewthread.php?tid=2999&page=1#pid18935)
設\(P\)為\(\Delta ABC\)中\(\overline{BC}\)上一點,\(\overline{PB}=\overline{AC}=a\),\(\displaystyle \angle BAP=\frac{1}{3}\angle PAC=\frac{\pi}{6}\),求\(\overline{PC}=\)
(111家齊高中,
https://math.pro/db/viewthread.php?tid=3626&page=1#pid23850)
第 4 題
已知橢圓:\(\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)過\(P(3\sqrt{3},1)\)其中\(a>0,b>0\),求\(a+b\)之最小值=
。
[解答]
https://math.pro/db/viewthread.php?tid=1072&page=1#pid2814