回覆 3# vln0106 的帖子
第 10 題
以 A、B、C 代之
P(A) = 1/2、P(B) = 1/3、P(C) = 1/6
P(A→B→C) 表示按 A、B、C 之順序出現之機率,重複出現的略去
E(A→B→C) 表示按 A、B、C 之順序出現之期望次數
P(A→B→C) = (1/2) * [(1/3)/(1 - 1/2)] * 1 = 1/3
P(A→C→B) = (1/2) * [(1/6)/(1 - 1/2)] * 1 = 1/6
P(B→A→C) = (1/3) * [(1/2)/(1 - 1/3)] * 1 = 1/4
P(B→C→A) = (1/3) * [(1/6)/(1 - 1/3)] * 1 = 1/12
P(C→A→B) = (1/6) * [(1/2)/(1 - 1/6)] * 1 = 1/10
P(C→B→A) = (1/6) * [(1/3)/(1 - 1/6)] * 1 = 1/15
E(A→B→C) = 1 + [1/(1 - 1/2)] + [1/(1 - 1/2 - 1/3)] = 9
E(A→C→B) = 1 + [1/(1 - 1/2)] + [1/(1 - 1/2 - 1/6)] = 6
E(B→A→C) = 1 + [1/(1 - 1/3)] + [1/(1 - 1/3 - 1/2)] = 17/2
E(B→C→A) = 1 + [1/(1 - 1/3)] + [1/(1 - 1/3 - 1/6)] = 9/2
E(C→A→B) = 1 + [1/(1 - 1/6)] + [1/(1 - 1/6 - 1/2)] = 26/5
E(C→B→A) = 1 + [1/(1 - 1/6)] + [1/(1 - 1/6 - 1/3)] = 21/5
所求 = (1/3) * 9 + (1/6) * 6 + (1/4) * (17/2) + (1/12) * (9/2) + (1/10) * (26/5) + (1/15) * (21/5) = 73/10