回復 12# litlesweetx 的帖子
12. 不妨設L1上的切點A(t,t^3), L1的斜率3t^2 ,t>0, 由整體圖形對稱原點O, OA的斜率=t^2, 令s=t^2
O至L1的投影點為B , 令角Q=OAB , tanQ=(3t^2-t^2)/(1+(3t^2)(t^2) )=(2t^2)/(1+3t^4)=2s/(1+3s^2)
易知 OAB面積 =1/2*OA*cosQ*OA*sinQ=1/4*OA^2*sin(2Q)=1/4*OA^2*(2tanQ)/(1+tanQ^2)=60/7/8
=>(s+s^3)*(1+3s^2)*(2s)/[(1+3s^2)^2+(2s)^2]=15/7 , 令r=s^2>=0
=>7*2r(1+r)*(1+3r)=15*[(1+3r)^2+4r] =>42*r^3-79*r^2-136r-15=0
=> (r-3)(42*r^2+47r+5)=0 =>r=3=s^2 , L1的斜率3t^2=3s=3ㄏ3