發新話題
打印

107台中女中

回復 7# d3054487667 的帖子

第3題另解
假設AB=a、AP=b、AQ=c
依面積比可得
ab:20c=12:9
ac:20b=27:24
相乘可得a長

TOP

回復 6# laylay 的帖子

請教laylay老師13.的 tan Q =-2怎麼算的阿?
還有想問12 14 15
謝謝

TOP

回復 12# litlesweetx 的帖子

第 15 題
-1 ≦ sinx ≦ 1
1 ≦ √(4cosx + 5) ≦ 3
-1 < sinx / √(4cosx + 5) < 1

y = sinx / √(4cosx + 5)
y^2 = [1 - (cosx)^2] / (4cosx + 5)
(cosx)^2 + 4y^2cosx + (5y^2 - 1) = 0
(4y^2)^2 - 4(5y^2 - 1) ≧ 0
可得 -1/2 ≦ y ≦ 1/2

[ 本帖最後由 thepiano 於 2018-5-2 00:22 編輯 ]

TOP

回復 12# litlesweetx 的帖子

第 14 題
令 x = cosθ,利用倍角、半角和疊合,可求出 x = cos54 度

TOP

回復 12# litlesweetx 的帖子

AB斜率=1/2 ,  與其垂直

TOP

回復 12# litlesweetx 的帖子

12. 不妨設L1上的切點A(t,t^3), L1的斜率3t^2 ,t>0, 由整體圖形對稱原點O, OA的斜率=t^2,  令s=t^2
      O至L1的投影點為B , 令角Q=OAB , tanQ=(3t^2-t^2)/(1+(3t^2)(t^2) )=(2t^2)/(1+3t^4)=2s/(1+3s^2)
     易知 OAB面積 =1/2*OA*cosQ*OA*sinQ=1/4*OA^2*sin(2Q)=1/4*OA^2*(2tanQ)/(1+tanQ^2)=60/7/8
      =>(s+s^3)*(1+3s^2)*(2s)/[(1+3s^2)^2+(2s)^2]=15/7   ,  令r=s^2>=0
      =>7*2r(1+r)*(1+3r)=15*[(1+3r)^2+4r]  =>42*r^3-79*r^2-136r-15=0
      => (r-3)(42*r^2+47r+5)=0 =>r=3=s^2  , L1的斜率3t^2=3s=3ㄏ3

TOP

填充13另解

附件

填充13.jpg (202.6 KB)

2018-5-2 11:10

填充13.jpg

TOP

填充9

想請問以下我的作法不知道錯在哪...

過C作垂線交AB於T點
過D作垂線交AB於K點
然後用向量CD長=向量CT+向量TK+向量KD長
其中可以把cosθ算出來

TOP

回復 18# XYZ 的帖子

第 9 題
小弟是這樣做
設\(\overline{AC}\)和\(\overline{BD}\)交於O
\(\begin{align}
  & \overline{OC}=6,\overline{OP}=\frac{1}{3}\overline{OA}=2 \\
& \overline{CP}=\sqrt{{{\overline{OC}}^{2}}-{{\overline{OP}}^{2}}}=4\sqrt{2} \\
\end{align}\)
作\(\overline{PQ}\)垂直\(\overline{AB}\)於Q
\(\begin{align}
  & \overline{PQ}=\frac{2\Delta APB}{\overline{AB}}=\frac{12}{3\sqrt{5}}=\frac{4\sqrt{5}}{5} \\
& \tan \theta =\frac{\overline{CP}}{\overline{PQ}}=\frac{4\sqrt{2}}{\frac{4\sqrt{5}}{5}}=\sqrt{10} \\
\end{align}\)

TOP

原來填充9的AC線段指的是還未對折前的

我一直看成是折上來後的AC線段

難道大家沒有這樣認知嗎

怪不得我一直算不出這個答案

TOP

發新話題