發新話題
打印

106新北市高中聯招

回復 6# son249 的帖子

填充第 9 題
兩焦點為 A(-2,0),A'(2,0)
PA + PB ≦ PA + PA' + A'B = 2a + A'B = 12 + 10 = 22
即 P 點是直線 A'B 和橢圓在第三象限的交點

TOP

填充8.

PA/sin80度=PB/sinPAB
PB/sin10度=PC/sin20度
PC/sinPAC=PA/sin30度
上面三式相乘得sinPACsin80度sin10度=sinPABsin20度/2(A)
因為sin80度=cos10度,cos10度sin10度=sin20度/2
=>sinPAC=sinPAB,又PAC+PAB<180度=>PAC=PAB=40度/2=20度
=>APC=180度-30度-20度=130度
由(A) 以後要馬上看出兩組三錯角正弦之積必相等

[ 本帖最後由 laylay 於 2017-5-15 22:17 編輯 ]

TOP

填充6

不失一般性可設\(xf(x)=a(x-1)(x-2)\ldots(x-2018)+1\)
則以\(x=0\)代入\(0=a \times 2018!+1\),\( \displaystyle a=-\frac{1}{2018!} \)
故\( \displaystyle 2020f(2020)=-\frac{1}{2018!}\times 2019!+1 \)
\( \displaystyle f(2020)=-\frac{2018}{2020}=-\frac{1009}{1010} \)

TOP

請教第三題、第五題

TOP

填充第 8 題
純幾何解

附件

20170515.jpg (49.99 KB)

2017-5-15 13:42

20170515.jpg

TOP

回復 14# 米斯蘭達 的帖子

填充第3題
\(\begin{align}
  & {{x}^{6}}+{{x}^{5}}+{{x}^{4}}-28{{x}^{3}}+{{x}^{2}}+x+1=0 \\
& {{x}^{3}}+{{x}^{2}}+x-28+\frac{1}{x}+\frac{1}{{{x}^{2}}}+\frac{1}{{{x}^{3}}}=0 \\
& x+\frac{1}{x}=t \\
& \left( {{t}^{3}}-3t \right)+\left( {{t}^{2}}-2 \right)+t-28=0 \\
& {{t}^{3}}+{{t}^{2}}-2t-30=0 \\
& t=3 \\
& x=\frac{3\pm \sqrt{5}}{2} \\
\end{align}\)

TOP

回復 15# thepiano 的帖子

請問您圖中D點最先是怎麼產生的?

TOP

回復 14# 米斯蘭達 的帖子

填充第5題
以\(\displaystyle a=2\cos \frac{2\pi }{7},b=2\cos \frac{4\pi }{7},c=2\cos \frac{6\pi }{7}\)為三根之方程式為\({{x}^{3}}+{{x}^{2}}-2x-1=0\)
參考https://math.pro/db/viewthread.php?tid=1041&page=1#pid15215
\(\begin{align}
  & a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c} \\
& =a+b+c+\frac{ab+bc+ca}{abc} \\
& =-\frac{1}{2}+\frac{\frac{-2}{4}}{\frac{1}{8}} \\
& =-\frac{9}{2} \\
\end{align}\)

TOP

回復 17# laylay 的帖子

以AB為邊,作正△DAB

TOP

回復 19# thepiano 的帖子

謝謝您,若在題目中10改12,20改24,
80改78,幾何還好做嗎?
此時由兩組錯角正弦之積會相等知
sinPACsin78度sin12度=sinPABsin24度sin30度
=>PAC=PAB=18度=>APC=132度。

[ 本帖最後由 laylay 於 2017-5-15 21:27 編輯 ]

TOP

發新話題