發新話題
打印

105師大附中代理

回復 10# dark30932 的帖子

數列\(\langle\;a_n\rangle\;_{n=1}\)滿足\(a_n=a_{n-1}-a_{n-2},n
\ge 3\),且\(a_{100}=100\),\(a_{200}=200\),求\(a_{300}=\)   
[解答]
提供参考解法

附件

image.jpg (40.48 KB)

2016-7-5 14:57

image.jpg

TOP

回復 11# eyeready 的帖子

想請教第7題
題目沒有X的2次項嗎?

TOP

回復 12# gamaisme 的帖子

漏打了

TOP

回復 11# eyeready 的帖子

感謝您~
原來可以這樣看規律阿~
眼界大開

TOP

想請問第二題,小弟知道圖形為折線圖,但是折線圖的最低點要怎麼求呢?
請網上的老師開示~謝謝

TOP

回復 15# dark30932 的帖子

小弟淺見
第二題的圖形為「平底型」,非尖底型,因此取值範圍在50-51其值皆相同,故可取50代入即是最小值(絕對值函數最小值發生在中位數)

TOP

想請教填充4和14題,謝謝

TOP

回復 17# 阿光 的帖子

第4題
\(12\times {{10}^{8}}=10\times 10\times 200\times 60000<A<20\times 20\times 300\times 70000=84\times {{10}^{8}}\)
另解
\(A=\left( {{2}^{2}}-1 \right)\left( {{2}^{2}}+1 \right)\left( {{2}^{4}}+1 \right)\left( {{2}^{8}}+1 \right)\left( {{2}^{16}}+1 \right)={{2}^{32}}-1\)

TOP

回復 17# 阿光 的帖子

第14題
\(\begin{align}
  & \sum\limits_{n=1}^{\infty }{\left\{ \frac{\sum\limits_{k=1}^{{{2}^{n}}-1}{\left[ {{\log }_{2}}k \right]}}{{{3}^{n}}} \right\}} \\
& =\frac{1\times 2}{3{}^{2}}+\frac{1\times 2+2\times 4}{3{}^{3}}+\frac{1\times 2+2\times 4+3\times 8}{3{}^{4}}+...+\frac{1\times 2+2\times 4+3\times 8+...+\left( n-1 \right)\times {{2}^{n-1}}}{3{}^{n}} \\
& =\sum\limits_{n=2}^{\infty }{\frac{\left( n-2 \right)\times {{2}^{n}}+2}{{{3}^{n}}}} \\
& =\sum\limits_{n=2}^{\infty }{\left( n-2 \right)\times {{\left( \frac{2}{3} \right)}^{n}}}+2\sum\limits_{n=2}^{\infty }{\frac{1}{{{3}^{n}}}} \\
& =\frac{8}{3}+\frac{1}{3} \\
& =3 \\
\end{align}\)

TOP

回復 6# dark30932 的帖子

第五題 第二小題
1*C(19,2)+2*C(18,2)+3*C(17,2)+...+18*C(2,2)=C(20,3)+C(19,3)+...+C(4,3)+C(2,2)  = C(20,4)  (巴斯卡定理)

所求之平均值為C(20,4)/C(20,3)=21/4

TOP

發新話題