第1題
要證明\(f\left( 4 \right)=64+16p+4q+8\ge 216\),即證明\(4p+q\ge 36\)
由於\(p>0,q>0\),易知\(f\left( x \right)={{x}^{3}}+p{{x}^{2}}+qx+8=0\)的三實根均為負
設三根為\(a,b,c\),則
\(\begin{align}
& p=\left( -a \right)+\left( -b \right)+\left( -c \right)\ge 3\sqrt[3]{\left( -a \right)\left( -b \right)\left( -c \right)}=3\sqrt[3]{8}=6 \\
& q=ab+bc+ca\ge 3\sqrt[3]{{{\left( abc \right)}^{2}}}=3\sqrt[3]{{{\left( -8 \right)}^{2}}}=12 \\
& 4p+q\ge 36 \\
\end{align}\)