填充6 ??
1. 前二式相減, 得\(x=\frac{c-1}{a-b}\), 即為二式之共同實根.
2. 後二式相減, 得\((1-c)x=b-a\). 若\(1-c=0\), 則前二式之共同根為0, 不合. 故\(1-c\neq0\), 此二式之共同實根為\(x=\frac{a-b}{c-1}\).
3. 故前二式與後二式之根互為倒數, 各設為\(\alpha,\frac{1}{\alpha}\), 帶入一, 三式, 得
\(\begin{align}
\alpha^2+a\alpha+1=0\\
a\alpha^2+\alpha+1=0\\
\end{align}\)
4. 再將上面二式相減, 得\((a-1)\alpha=a-1\). 若\(a-1=1\), 則\(a=1\), 代入第一式並無實根, 不合.
故\(a-1\neq0\), 得\(\alpha=1\), 代入前二式得\(a=-2,b+c=-1\), 故\(a+b+c)=-3\)
有錯請不吝指正.
?? 即使算式沒錯, 但討論冗長, 似乎不符本題[3分]的要旨. 想請問更快的方法, 謝謝.
[ 本帖最後由 David 於 2014-6-19 03:35 PM 編輯 ]