14 12
發新話題
打印

102北市陽明高中

回復 10# chin 的帖子

當你重新增加樣本數去作調查

\(\displaystyle \sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}\) 中的 \(\widehat{p}\) 你無法肯定維持原本的0.56

要保證誤差絕對在3%以下,6樓ichi大的解題中已說明 ^^

[ 本帖最後由 Pacers31 於 2013-8-22 10:38 PM 編輯 ]

TOP

回覆#11.Pacers31的帖子

題目中指出:  在95%信心水準之下,
                     A、B兩民調機構得到候選人支持度的信賴區間分別為〔0.52,0.60〕,〔0.42,0.48〕,
                    試問:
                    (2) (5%) A 民調機構在95%信心水準之下,欲使誤差在3%以內,則須抽樣多少個樣本?

                    ∵ A 民調機構在95%信心水準之下,信賴區間為〔0.52,0.60〕
                    ∴ p=(0.52+0.60)/2=0.56, 是可知的

TOP

回復 12# chin 的帖子

這篇暫且就用 \(p\) 這個符號代表sample proportion吧

\(n\) 表示某次抽樣調查人數,\(x\) 代表當中支持候選人的人數,則 \(\displaystyle p=\frac{x}{n}\)

95%信賴區間: \(\displaystyle \Big(p-2\sqrt{\frac{p(1-p)}{n}},\ p+2\sqrt{\frac{p(1-p)}{n}}\Big)\)

已知此次抽樣調查的結果得到的信賴區間為 [052, 0.60] \(\displaystyle \Rightarrow p=\frac{x}{n}=0.56\)

表示"這次"的調查中,支持人數佔了總調查人數的0.56

第(2)小題的課題是:要將誤差控制在3%以內 (上次的調查獲得的區間為4%),增加樣本數可以辦到這件事

於是"重新"民調,這次抽查的人數 \(m\) 和上次的人數 \(n\) 已經不同了,

當中支持該候選人的人數 \(y\) 也不一定和上次的 \(x\) 同了

" 這次的 \(\displaystyle p=\frac{y}{m}\) 不見得會是 \(\displaystyle \frac{x}{n}=0.56\) "

在不知道 \(p\) 會是多少的情況下, \(m\) 要多少可以使誤差在3%以內?

\(\displaystyle 2\sqrt{\frac{p(1-p)}{m}}\leq0.03 \)   \(\displaystyle \Rightarrow \sqrt{m}\geq\frac{\sqrt{p(1-p)}}{0.015}\)

而 \(\displaystyle p(1-p)\leq\frac{1}{4}\),上面右式最大就 \(\displaystyle \frac{\sqrt{1/4}}{0.015}=\frac{1}{0.03} \)

\(\sqrt{m}\) 只要能比 \(\frac{1}{0.03}\) 大就可以滿足誤差在3%以內了

-------------------

補充樓下最後提問: 沒錯,即使改成B機構(或其他民調),答案是一樣的 ^^

[ 本帖最後由 Pacers31 於 2013-8-23 11:43 AM 編輯 ]

TOP

回覆12#Pacers31的帖子

(要將誤差控制在3%以內 (上次的調查獲得的區間為4%),增加樣本數可以辦到這件事
於是"重新"民調,這次抽查的人數 m 和上次的人數 n 已經不同了)
不論誤差多少祇會改變 信賴區間,不會改變 p,此小題用 A 民調機構,表示並沒有
改變A民調機構調查出來的支持度p,否則,改問
"B 民調機構(或某民調)在95%信心水準之下,欲使誤差在3%以內,則須抽樣多少個樣本?",是不是答案都一樣呢? 就無須強調"A 民調機構"了?

TOP

 14 12
發新話題