回復 15# ilikemath 的帖子
第 2 題
\( A=\{\; w |\; w^{40}=1 \}\; \),\( B=\{\; y |\; y^{42}=1 \}\; \),\( C=\{\; z |\; z^{24}=1 \}\; \)
若\( D=\{\; wyz |\; w \in A,y \in B,z \in C \}\; \),則\(D\)有幾個元素?
[解答]
忘記在哪邊好像看到兩個集合的版本了
將集合內的元素寫成 \( e^{i\theta} \) 之形式。考慮 \( \displaystyle D_{\theta}=\{n\cdot\frac{2\pi}{40}+m\cdot\frac{2\pi}{42}+p\cdot\frac{2\pi}{24}+q\cdot2\pi\mid n,m,p,q\in\mathbb{Z}\} \)
如果把裡面的數看作正整數的即 \( \{na+mb+pc+qd\mid n,m,p,q\in\mathbb{Z}\}=\{n\gcd(a,b,c,d)\mid n\in\mathbb{Z}\} \),其中 \( a,b,c,d\in\mathbb{N} \)。
\( \displaystyle 840\cdot D_{\theta}=2\pi\cdot\{21n+20m+35p+840q\mid n,m,p\in\mathbb{Z}\}=2\pi\cdot\mathbb{Z}\Rightarrow D_{\theta}=\{\frac{2n\pi}{840}\mid n\in\mathbb{Z}\} \),其中 \( a\cdot S:=\{as\mid s\in S\} \)。
故 \( |D|=840 \)。