回復 18# Sandy 的帖子
第 1 題:
設\(n\)為大於1的正整數,若\(n^2+3n+11\)為兩相鄰正奇數的乘積,則\(n=\) 。
[解答]
依題意可令 \(\displaystyle n^2+3n+11 = (2k-1)(2k+1)\),其中 \(k\) 正整數,
\(\displaystyle \left(n+\frac{3}{2}\right)^2+\frac{39}{4} = 4k^2\)
\(\displaystyle \Rightarrow \left(4k\right)^2 - \left(2n+3\right)^2= 39\)
可得 \(\displaystyle \left(4k-2n-3\right)\left(4k+2n+3\right)=39\)
且因為 \(n,k\) 皆為正整數,所以 \(4k+2n+3>4k-2n-3\) 且兩者皆為正整數,
所以
case 1: \(\displaystyle 4k-2n-3=1, 4k+2n+3=39 \Rightarrow k=5, n=8\)
case 2: \(\displaystyle 4k-2n-3=3, 4k+2n+3=13 \Rightarrow k=1, n=1\) (不合)