回復 16# martinofncku 的帖子
9 (2)
A^{-1} = \begin{bmatrix}\frac{2}{5} & \frac{1}{5}\\
\frac{1}{5} & \frac{-2}{5}
\end{bmatrix} ,特徵值 \lambda = =\pm\frac{\sqrt{5}}{5} ,對應之特徵向量為 v_{1}=\begin{bmatrix}2+\sqrt{5}\\
1
\end{bmatrix}
, v_{2}=\begin{bmatrix}2-\sqrt{5}\\
1
\end{bmatrix} 。
\begin{bmatrix}1\\
3
\end{bmatrix} = \frac{3-\sqrt{5}}{2} v_1 + \frac{3+\sqrt{5}}{2} v_2
乘 99 次得到 \begin{bmatrix}a_{100}\\
b_{100}
\end{bmatrix}=\frac{3-\sqrt{5}}{2}\cdot5^{50}v_{1}+\frac{3+\sqrt{5}}{2}\cdot5^{50}v_{2}\Rightarrow\begin{bmatrix}a_{1}\\
b_{1}
\end{bmatrix}=\frac{3-\sqrt{5}}{2}\cdot\sqrt{5}v_{1}+\frac{3-\sqrt{5}}{2}\cdot(-\sqrt{5})v_{2}
化簡得 \frac{3\sqrt{5}-5}{2}\begin{bmatrix}2+\sqrt{5}\\
1
\end{bmatrix}-\frac{3\sqrt{5}+5}{2}\begin{bmatrix}2-\sqrt{5}\\
1
\end{bmatrix}=\frac{3\sqrt{5}}{2}\begin{bmatrix}2\sqrt{5}\\
0
\end{bmatrix}-\frac{5}{2}\begin{bmatrix}4\\
2
\end{bmatrix}=\begin{bmatrix}15\\
0
\end{bmatrix}-\begin{bmatrix}10\\
5
\end{bmatrix}=\begin{bmatrix}5\\
-5
\end{bmatrix}