單選第 6 題
解一:
令 \(\displaystyle \tan\frac{x}{2}=t\),
則 \(\displaystyle \frac{1-t^2}{1+t^2}+3\cdot\frac{2t}{1+t^2}+2=0\)
\(\Rightarrow t^2+6t+3=0\)
所以,\(\displaystyle \tan\frac{\alpha}{2}+\tan\frac{\beta}{2}=-6, \tan\frac{\alpha}{2}\cdot\tan\frac{\beta}{2}=3\)
\(\displaystyle \tan\frac{\alpha+\beta}{2}=\frac{-6}{1-3}=3\)
\(\displaystyle \tan\left(\alpha+\beta\right)=\frac{2\cdot 3}{1-3^2}=-\frac{3}{4}.\)
解二:
畫出 \(x^2+y^2=1\) 與 \(x+3y+2=0\) 的圖形,
可得 \(\displaystyle \tan\frac{\alpha+\beta}{2}=\mbox{紅色線段的斜率}=3\)
\(\displaystyle \Rightarrow\tan\left(\alpha+\beta\right)=\frac{2\cdot 3}{1-3^2}=-\frac{3}{4}.\)