第 7 題
若 \(m\in\mathbb{N}\),求 \(\displaystyle \lim_{n\to\infty} n^2\left(\frac{m}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \cdots - \frac{1}{n+m}\right)=?\)
解答:
\(\displaystyle \lim_{n\to\infty} n^2\left(\frac{m}{n} - \frac{1}{n+1} - \frac{1}{n+2} - \cdots - \frac{1}{n+m}\right)\)
\(\displaystyle =\lim_{n\to\infty} n\left(m - \frac{n}{n+1} - \frac{n}{n+2} - \cdots - \frac{n}{n+m}\right)\)
\(\displaystyle =\lim_{n\to\infty} n\left\{ \left(1- \frac{n}{n+1}\right) +\left(1-\frac{n}{n+2}\right)+\cdots +\left(1 - \frac{n}{n+m}\right)\right\}\)
\(\displaystyle =\lim_{n\to\infty} n\left( \frac{1}{n+1} +\frac{2}{n+2}+\cdots +\frac{m}{n+m}\right)\)
\(\displaystyle =\lim_{n\to\infty} \left( \frac{n}{n+1} +\frac{2n}{n+2}+\cdots +\frac{mn}{n+m}\right)\)
\(\displaystyle =\lim_{n\to\infty} \left( \frac{1}{1+\frac{1}{n}} +\frac{2}{1+\frac{2}{n}}+\cdots +\frac{m}{1+\frac{m}{n}}\right)\)
\(\displaystyle =\frac{1}{1+0} +\frac{2}{1+0}+\cdots +\frac{m}{1+0}\)
\(\displaystyle =1+2+\cdots+m=\frac{m\left(m+1\right)}{2}.\)
第 9 題:
若投擲 \(n\) 顆公正的骰子,有偶數顆為 \(1\) 點的機率是 \(\displaystyle \frac{1}{2}\left(a+b^n\right)\),求 \(\left(a,b\right)=?\)
解答:
設擲 \(n\) 顆公正的骰子,有偶數顆為 \(1\) 點的機率是 \(P(n)\),則有奇數顆是 \(1\) 的機率為 \(1-P(n).\)
先找出遞迴關係,
\(\displaystyle P(1)=\frac{5}{6}\) ,且當 \(\displaystyle n\geq2\) 時,\(\displaystyle P(n)=\frac{1}{6}\left(1-P(n-1)\right)+\frac{5}{6}P(n-1)\)
\(\displaystyle \Rightarrow P(n)=\frac{1}{6}+\frac{2}{3}P(n-1)\)
先調整成形如 \(\displaystyle \left(P(n)+k\right)=\lambda\left(P(n-1)+k\right)\) 的形式,
\(\displaystyle P(n)-\frac{1}{2}=\frac{2}{3}\left(P(n-1)-\frac{1}{2}\right)\)
所以,
\(\displaystyle P(n)-\frac{1}{2}=\frac{2}{3}\left(P(n-1)-\frac{1}{2}\right)\)
\(\displaystyle P(n-1)-\frac{1}{2}=\frac{2}{3}\left(P(n-2)-\frac{1}{2}\right)\)
\(\displaystyle \vdots\)
\(\displaystyle P(2)-\frac{1}{2}=\frac{2}{3}\left(P(1)-\frac{1}{2}\right)\)
將上式乘起來,可得
\(\displaystyle P(n)-\frac{1}{2}=\left(\frac{2}{3}\right)^{n-1}\left(P(1)-\frac{1}{2}\right)\)
\(\displaystyle \Rightarrow P(n)=\frac{1}{2}+\left(\frac{2}{3}\right)^{n-1}\left(\frac{5}{6}-\frac{1}{2}\right)\)
\(\displaystyle =\frac{1}{2}+\frac{1}{3}\left(\frac{2}{3}\right)^{n-1}\)
\(\displaystyle =\frac{1}{2}+\frac{1}{2}\left(\frac{2}{3}\right)^{n}\)
\(\displaystyle =\frac{1}{2}\left(1+\left(\frac{2}{3}\right)^{n}\right).\)
類似題目:
1.
https://math.pro/db/thread-408-1-1.html
2.
https://math.pro/db/thread-626-1-1.html