4.
若

為1的立方虛根之一,則
(1−
+
2)(1−
2+
4)(1−
4+
8)(1−
8+
16)=?
(A)8 (B)10 (C)12 (D)14 (E)16
[解答]
(1−
+
2)(1−
2+
)(1−
+
2)(1−
2+
)
=[ (1−
+
2)(1−
2+
)] 2=[ (−2
)(−2
2)] 2=16
16.
在等比數列
an
中,
a1=1,
a4=2−
5 ,
an+2=an+1+an,
n
1。則
an
的公比=?(A)
21−
5 (B)
21+
5 (C)
21−
3 (D)
21+
3 (E)
32
[提示]
an+1an+2=1+anan+1,
\displaystyle r=1+\frac{1}{r}
取負的r
40.
如右圖,三個兩兩外切的圓,也都與直線相切,最大圓半徑為144,中圓的半徑為36,求最小圓的半徑為何?(A)4 (B)12 (C)16 (D)18。
[提示]
\displaystyle \frac{1}{\sqrt{r}}=\frac{1}{\sqrt{144}}+\frac{1}{\sqrt{36}}
2009.10.14補充
Two circles with radii a and b respectively touch each other externally. Let c be the radius of a circle that touches these two circles as well as a common tangent to the two circles. Prove that
\displaystyle \frac{1}{\sqrt{c}}=\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}
http://www.mathlinks.ro/viewtopic.php?p=1597647
109.6.6補充
三個兩兩外切的圓,也都與直線相切,最大圓半徑為100,中圓的半徑為25,求最小圓的半徑為何?(A)
\displaystyle \frac{100}{9} (B)
\displaystyle \frac{10}{3} (C)
\displaystyle \frac{36}{5} (D)
\displaystyle \frac{18}{5}
(109全國高中職聯招,
https://math.pro/db/thread-3342-1-1.html)
44.
設z,c皆為複數,|z|=1,
\overline{c} z≠1 ,z≠c,則
\displaystyle \Bigg\vert\ \frac{z-c}{1-\overline{c} z} \Bigg\vert\ 之值為?
(A)0 (B)1 (C)∞ (D)|c| (E)以上皆非
[解答]
|z|=1,
z \cdot \overline{z}=1
\displaystyle \frac{z-c}{1-\overline{c} z} \cdot \frac{\overline{z}-\overline{c}}{1-c \overline{z}}=\frac{z \cdot \overline{z}-z \cdot \overline{c}-c \cdot \overline{z}+c \cdot \overline{c}}{1-c \cdot \overline{z}-\overline{c} \cdot z+c \cdot \overline{c} \cdot z \cdot \overline{z}}=1
50.
設a,b,c均為整數,1≦a,b,c≦9,已知a,b,c成等差數列,且
0. \overline{a}+0. \overline{4b}=1. \overline{2c} ,則序組(a,b,c)=
(A)(7,5,3) (B)(7,6,5) (C)(8,6,4) (D)(8,7,6) (E)(6,7,8)
[解答]
\displaystyle \frac{a}{9}+\frac{40+b}{99}=1+\frac{20+c}{99}
用c=2b-a來換得
12a-b=79 只有a=7符合