15.
設\(\Delta ABC\)的三邊長分別為\(a,b,c\),且\(a+b+c=12\),求\(\displaystyle \frac{a}{b+c-a}+\frac{4b}{c+a-b}+\frac{9c}{a+b-c}\)的最小值為
。
[解答]
設 \( A=b+c-a,B=a+c-b,C=a+b-c\),則 \(\displaystyle A+B+C=a+b+c=12,a=\frac{B+C}{2},b=\frac{A+C}{2},c=\frac{A+B}{2}\)
原式 \(\displaystyle =\frac{B+C}{2A}+\frac{2A+2C}{B}+\frac{9A+9B}{2C}=(\frac{B}{2A}+\frac{2A}{B})+(\frac{C}{2A}+\frac{9A}{2C})+(\frac{2C}{B}+\frac{9B}{2C})\)
由算幾不等式知:原式\(\displaystyle \geq 2\sqrt{\frac{B}{2A}\frac{2A}{B}}+2\sqrt{\frac{C}{2A}\frac{9A}{2C}}+2\sqrt{\frac{2C}{B}\frac{9B}{2C}}=2+3+6=11\)
等號成立時 \(A:B:C=1:2:3\),即 \(a=5,b=4,c=3\)
111.7,4補充
相關問題,
https://math.pro/db/viewthread.php?tid=1569&page=5#pid14278