回復 2# litlesweetx 的帖子
15.
在\(\Delta ABC\)中,\( \overline{AB}=6,\overline{BC}=4,\overline{CA}=5 \),圓\(O_1,O_2,O_3\)為\(\Delta ABC\)的三個旁切圓,圓\(O_1\)和\(\overline{BC}\)相切於\(D\),圓\(O_2\)和\(\overline{CA}\)相切於\(E\),圓\(O_3\)和\(\overline{AB}\)相切於\(F\)。試求\( \displaystyle \frac{\Delta DEF面積}{\Delta ABC面積}= \) ?
[解答]
r3(tan(A/2)+(tan(B/2))=c
AEF=1/2*(r3tan(A/2))(r2tan(A/2))*sinA
=1/2*c/(1+tan(B/2)/tan(A/2))*b/(1+tan(C/2)/tan(A/2))*sinA
ABC=1/2*bc*sinA , tan(A/2)=\(\sqrt{(s-b)(s-c)/(s(s-a))}\)
AEF/ABC=1/{[1+(s-a)/s-b)][1+(s-a)/(s-c)]}=(s-b)(s-c)/(cb)=a(s-b)(s-c)/(abc)
或者 AF=r3*tan(A/2)=ABC/(s-c)*\(\sqrt{(s-b)(s-c)/(s(s-a))}\)
=\(\sqrt{s(s-a)(s-b)(s-c)}\)/(s-c)*\(\sqrt{(s-b)(s-c)/(s(s-a))}\)=s-b
同理AE=s-c
AEF/ABC=(s-b)(s-c)/(cb)=a(s-b)(s-c)/(abc)
a=4,b=5,c=6,s-a=7/2,s-b=5/2,s-c=3/2
所求=1-(4*5/2*3/2+5*7/2*3/2+6*7/2*5/2)/(4*5*6)=7/32
13.
設\(x_1<x_2<x_3\)為方程式\(\sqrt{2014}x^3-4029x^2+2=0\)的三個實數根,試求\(x_2(x_1+x_3)\)之值 。
[解答]
f(-1)<0,f(0)>0,f(1)<0,f(1000000)>0 =>-1<x1<0<x2<1<x3
令t=\(\sqrt{2014}\) ,
則 tx^3-(2t^2+1)x^2+2=0 => (-2x^2)t^2+(x^3)t+(-x^2+2)=0
=> ((x)t-1)((-2x)t+(x^2-2))=0 => x=1/t=x2 or x^2-2xt-2=0 =>x1x3=-2
x1x2+x1x3+x2x3=0 => 所求=-x1x3=2