\(
\begin{array}{l}
(1)因為 a_1 = \sqrt 3 , \\
\displaystyle \sqrt 3 \le a_2 = \sqrt {3 + \sqrt 3 } \le \frac{{1 + \sqrt {13} }}{2} \\
\displaystyle \sqrt 3 \le a_3 = \sqrt {3 + \sqrt {3 + \sqrt 3 } } \le \sqrt {3 + \frac{{1 + \sqrt {13} }}{2}} = \frac{{1 + \sqrt {13} }}{2} \\
{\rm{ }}..... \\
\displaystyle \sqrt 3 \le a_n = \sqrt {3 + \sqrt {3 + ...\sqrt {3 + \sqrt 3 } } } \le \sqrt {3 + \frac{{1 + \sqrt {13} }}{2}} = \frac{{1 + \sqrt {13} }}{2} \\
\displaystyle \forall n \in N ,\sqrt 3 \le a_n \le \frac{{1 + \sqrt {13} }}{2} \\
\end{array}
\)
\(
\begin{array}{l}
(2) \\
\displaystyle a_{n + 1}^2 - a_n^2 = 3 + a_n - a_n^2 = - (a_n - \frac{{1 + \sqrt {13} }}{2})(a_n - \frac{{1 - \sqrt {13} }}{2}) > 0 \\
因此為遞增數列
\end{array}
\)
(3)
\(
\begin{array}{l}
根據實數完備性,極限值存在,可令 \displaystyle \mathop {\lim }\limits_{n \to \infty } a_n = \alpha \\
\displaystyle \alpha = \sqrt {3 + \alpha } \to \alpha ^2 = 3 + \alpha \to \alpha = \frac{{1 + \sqrt {13} }}{2} (負不合) \\
\end{array}
\)
[
本帖最後由 eyeready 於 2017-5-27 19:06 編輯 ]