這張考卷,我有去考。等等訂正把答案貼出來。讓我最嘔的是,填充題第十一題,最近算寸絲的講義,算了第200題,前面題目有遇到類似取高斯函數的題目,方法也會了,考場上算出四個答案。我只驗算真數要恆正,沒有驗算原來的等式。因此我的答案寫了四個,包含那個正確答案。不知道這題可以撿到幾分~~~
11、若實數
x 滿足
{{\left( \log x \right)}^{2}}-\left[ \log x \right]-3=0 ,則
x=?
\begin{array}{*{20}{l}}
{}&{\left[ {\log x} \right] = t \Rightarrow t \le \log x < t + 1}\\
{}&{ \Rightarrow \left( {\log x} \right) - 1 < t \le \log x}\\
{}&{{{\left( {\log x} \right)}^2} - 3 = \left[ {\log x} \right] = t}\\
{}&{ \Rightarrow \left( {\log x} \right) - 1 < {{\left( {\log x} \right)}^2} - 3 \le \log x}\\
{}&\begin{array}{l}
\log x = A\\
A - 1 < {A^2} - 3 \le A\\
\Rightarrow \left\{ \begin{array}{l}
A - 1 < {A^2} - 3\\
{A^2} - 3 \le A
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
{A^2} - A - 2 > 0\\
{A^2} - A - 3 \le 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
A > 2,A < - 1\\
- 1. \cdots \simeq \frac{{1 - \sqrt {13} }}{2} \le A \le \frac{{1 + \sqrt {13} }}{2} \simeq 2. \cdots
\end{array} \right.\\
\Rightarrow \frac{{1 - \sqrt {13} }}{2} \le A <- 1 , 2 < A \le \frac{{1 + \sqrt {13} }}{2}
\end{array}
\end{array}
\left[ {\log x} \right] = - 2,[\log x] = 2
帶回原式 ,
(1)
\begin{array}{l}
{\left( {\log x} \right)^2} - ( - 2) - 3 = 0\\
\Rightarrow \log x = \pm 1 \Rightarrow x = 10 \vee x = \frac{1}{{10}}
\end{array}
(2)
\begin{array}{l}
{\left( {\log x} \right)^2} - (2) - 3 = 0\\
\Rightarrow \log x = \pm \sqrt 5 \Rightarrow x = {10^{\sqrt 5 }} \vee x = {10^{ - \sqrt 5 }}
\end{array}
x = 10,\frac{1}{{10}},{10^{\sqrt 5 }},{10^{ - \sqrt 5 }}
帶回
{{\left( \log x \right)}^{2}}-\left[ \log x \right]-3=0 驗算
驗算發現只有
{10^{\sqrt 5 }},符合等式。其餘都不合。另外三個答案,我在寫的時候,只驗算是否真數恆正。
沒有想到驗算這個原本題目的等式。因此四個答案都寫下去了。應該是都沒有分數了。(~~~樂極生悲,可惜了~~~會寫的題目就要步步驚心,小心把正確答案找出來)~~
[
本帖最後由 shingjay176 於 2014-4-26 09:12 PM 編輯 ]