3.
\( \triangle ABC \),\( cosA:cosB:cosC=25:39: (-3) \),求\( a:b:c \)
[解答]
\( cosC=cos(\pi-(A+B))=-cos(A+B)=-cosAcosB+sinAsinB=-cosAcosB+\sqrt{(1-cos^2A)(1-cos^2B)} \)
\( cosC+cosAcosB=\sqrt{1-cos^2A-cos^2 B+cos^2Acos^2B} \)
\( cos^2C+2cosAcosBcosC+cos^2Acos^2B=1-cos^2 A-cos^2 B+cos^2 Acos^2 B \)
\( 2cosAcosBcosC+cos^2A+cos^2B+cos^2C-1=0 \)
令\( cosA=25t \),\( cosB=39t \),\( cosC=-3t \)
代入上式得\( 2(25t)(39t)(-3t)+(25t)^2+(39t)^2+(-3t)^2-1=0 \)
\( 5850t^3-2155t^2+1=0 \)
\( (45t-1)(130t^2-45t-1)=0 \) (我用數學軟體算出來的)
另外兩根為\( t=-0.020953819317376 \),\( t=0.36710766547122 \)
當\( t=-0.02 \)時,\( cosA,cosB \)都是負的,\( ∠A,∠B \)大於\( 90^\circ \)
當\( t=0.36 \)時,\( cosB=39*0.36=14.04 \)
所以另兩根都不合
\( \displaystyle t=\frac{1}{45} \)
\( \displaystyle cosA=\frac{25}{45}=\frac{5}{9} \) , \( \displaystyle cosB=\frac{39}{45}=\frac{13}{15} \) , \( \displaystyle cosC=\frac{-3}{45}=-\frac{1}{15} \)
\( \displaystyle sinA=\frac{2 \sqrt{14}}{9} \) , \( \displaystyle sinB=\frac{2 \sqrt{14}}{15} \) , \( \displaystyle sinC=\frac{4 \sqrt{14}}{15} \)
\( a:b:c=5:3:6 \)
105.1.17補充一題
三角形\(ABC\)中,已知\(cosA:cosB:cosC=25:19:7\),求\(sinA:sinB:sinC=\)?
112.7.11補充
\(\Delta ABC\)中,\(sinA:sinB:sinC=3:5:7\),求\(cosA:cosB:cosC=\)
。
(112羅東高工,
https://math.pro/db/thread-3772-1-1.html)