1.
設\( Γ_1 \):\( \displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2} \le 1 \)、\( Γ_2 \):\( \displaystyle \frac{(x-a)^2}{a^2}+\frac{y^2}{b^2} \le 1 \),其中\( a>b>0 \),求\( Γ_1 \)與\( Γ_2 \)交集的區域面積為?
看到老王老師的解法,讓我想到另一題
通過橢圓\( \displaystyle \frac{x^2}{25}+\frac{y^2}{16}=1 \)上兩點\( (0,-4) \),\( \displaystyle (\frac{5 \sqrt{3}}{2},2) \)的直線L,將橢圓內部分割成兩個區域,試問較小區域的面積為?
(1)\( \displaystyle \frac{20 \pi}{3} \) (2)\( \displaystyle \frac{25 \pi}{3}-\frac{25 \sqrt{3}}{4} \) (3)\( \displaystyle \frac{20 \pi}{3}-\frac{25 \sqrt{3}}{4} \) (4)\( \displaystyle \frac{20 \pi}{3}-5 \sqrt{3} \)
(98桃園縣國中聯招,
https://math.pro/db/thread-826-1-1.html)
8.若\(\cases{\displaystyle x=\frac{12z^2}{1+36z^2} \cr y=\frac{12x^2}{1+36x^2} \cr z=\frac{12y^2}{1+36y^2}} \),則\( x+y+z= \)
解方程組\( \displaystyle \cases{1+x^2=2y \cr 1+y^2=2z \cr 1+z^2=2x} \)。
102.3.28補充
Find all real solutions to the following system of equations. Carefully justify your answer.
\( \cases{\displaystyle \frac{4x^2}{1+4x^2}=y \cr \frac{4y^2}{1+4y^2}=z \cr \frac{4z^2}{1+4z^2}=x} \)
(1996 Canada National Olympiad,
http://www.artofproblemsolving.c ... id=51&year=1996)
https://math.stackexchange.com/q ... -involving-fixed-po
計算題
4.
已知函數\( f(x)=ax^2-c \)( \( a,c \in R \) )滿足\( -4 \le f(1) \le -1 \),\( -1 \le f(2) \le 5 \),
(1)利用Lagrange多項式,將\( f(x) \)表為\( P_1(x)f(1)+P_2(x)f(2) \),其中\( P_1(x) \)與\( P_2(x) \)均為二次多項式,則\( P_1(x)= \)?\( P_2(x)= \)?
(2)求\( f(3) \)之值的範圍?
高中數學常見題之一題多解
http://i.imgur.com/XaQ6H.gif
http://i.imgur.com/MvBFJ.gif
http://i.imgur.com/HDRBC.gif
已知a、b為實數,\( f(x)=ax^2+bx \),滿足\( 1 \le f(1) \le 2 \),\( 2 \le f(2) \le 4 \),若\( P \le f(3) \le Q \),則數對\( (P,Q) \)為何?
(101桃園縣高中聯招,
https://math.pro/db/thread-1416-1-1.html)
101.11.25補充
設\( f(x)=ax^2+bx+c \),若已知\( 1 \le f(1) \le 2 \),\( 1 \le f(2) \le 4 \),\( 3 \le f(3) \le 11 \),求\( f(4) \)之最大值?
h ttp://forum.nta.org.tw/examservice/showthread.php?t=12657(連結已失效)
110.8.2補充
若二次實係數多項式函數\(f(x)\)滿足\(\cases{-1\le f(1)\le 3 \cr 6 \le f(2)\le 10 \cr 2 \le f(4) \le 24}\),則\(f(7)\)的最大值?
(110竹東高中,
https://math.pro/db/thread-3533-1-1.html)
6.
設\( x_1 \),\( x_2 \),…,\( x_n \)都是正數且\( n \ge 2 \),試分別利用算幾不等式與數學歸納法兩種方法證明:
\( \displaystyle \frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+\frac{x_3^2}{x_4}+……+\frac{x_{n-1}^2}{x_n}+\frac{x_n^2}{x_1}\ge x_1+x_2+…+x_n \)
設\( x_1,x_2,...,x_n \)都是正數,試證\( \displaystyle \frac{x_1^2}{x_2}+\frac{x_2^2}{x_3}+...+\frac{x_{n-1}^2}{x_n}+\frac{x_n^2}{x_1}\ge x_1+x_2+...+x_n \)。
(100桃園高中,
https://math.pro/db/thread-1144-1-1.html)
設\( a_1,a_2,...,a_n \)皆為正數,求證:\( \displaystyle \sum_{k=1}^n a_k \le \frac{a_1^2}{a_2}+\frac{a_2^2}{a_3}+...+\frac{a_n^2}{a_1} \)
(94高中數學能力競賽 台南區筆試一試題,h ttp://www.math.nuk.edu.tw/senpe ... _High_Tainan_01.pdf連結已失效)
101.12.11補充
我在這本書找到這題的數學歸納法證明
夏興國,數學歸納法縱橫談