感謝分享
3.
曲線Γ:\( \displaystyle y=\frac{1}{x} \),
(1)△ABC三頂點皆在曲線Γ 上,求證其垂心亦在曲線Γ上。
(2)\( D=(-1,-1) \),△BCD為正三角形,且B,C在第一象限曲線Γ上。求B,C坐標。
https://math.pro/db/thread-559-1-1.html
在最後一題加分題有解答
連結已失效h ttp://web.tcfsh.tc.edu.tw/math/math2/T95221A.pdf
設雙曲線\( xy=1 \)的兩支為\( C_1,C_2 \),正三角形PQR的三頂點位於此雙曲線上。
(1)求證:P,Q,R不能都在雙曲線的同一支上。
(2)設\( P(-1,-1) \)在\( C_2 \)上,Q,R在\( C_1 \)上,求頂點Q,R的坐標。
(1997大陸高中數學聯合競賽)
4.
我覺得題目要改成這樣才算得出來
(1)\( f(x)=\sqrt{-x^2+68x-256}-\sqrt{-x^2+10x-9} \),求\( f(x) \)的最大值。
(2)承上,此時x之值。
[解答]
(x-34)^2+y^2=30^2的上半圓為\( y=\sqrt{-x^2+68x-256} \)
(x-5)^2+y^2=4^2的上半圓為\( y=\sqrt{-x^2+10x-9} \)
此時\( f(x) \)可視為兩半圓的y值相減的函數,當x=9時有最大值\( 5\sqrt{11} \)
感謝lianger和tsusy指教,原來用加的也是可以解出來
Find the largest positive value attained by the function \( f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48} \), x a real number
(A)\( \sqrt{7}-1 \) (B)3 (C)\( 2\sqrt{3} \) (D)4 (E)\( \sqrt{55}-\sqrt{5} \)
(1993AHSME,
http://www.artofproblemsolving.c ... 82&cid=44&year=1993)
設\( x \in R \),試求\( f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48} \)的最大值?
(96和美高中,96基隆海事)
5.
\( <x_n> \)正實數數列,\( \displaystyle x_1=\frac{3}{4} \)且滿足\( x_{k+1}^2=x_k^4+2x_k^3+x_k^2 \),求\( \displaystyle \Bigg[\; \frac{1}{x_1+1}+\frac{1}{x_2+1}+...+\frac{1}{x_{202}+1} \Bigg]\; \)
有一個數列\( x_1 \),\( x_2 \),\( x_3 \),…,\( x_{2001} \),其中\( \displaystyle x_1=\frac{1}{3} \)且\( x_{k+1}=x_k^2+x_k \),\( k=1,2,...,2000 \)請找出\( \displaystyle \frac{1}{x_1+1}+\frac{1}{x_2+1}+\frac{1}{x_3+1}+...+\frac{1}{x_{2001}+1} \)的整數部分?
(建中通訊解題第11期)
10.
求所有的正實數x,y,滿足\( \displaystyle \sqrt{\frac{x^2+y^2}{2}} \),\( \displaystyle \frac{x+y}{2} \),\( \sqrt{xy} \),\( \displaystyle \frac{2xy}{x+y} \)皆為正整數且四數之和為66。
感謝thepiano將這麼古老的討論文章挖了出來
http://www.shiner.idv.tw/teachers/viewtopic.php?t=2814
h ttp://forum.nta.org.tw/examservice/showthread.php?t=8852 (連結已失效)