Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
發新話題
打印

教甄筆試心得分享 110.8.21寸絲教甄筆記手寫解答快來下載

教甄試題整理

「前人種樹,後人乘涼。」幾位老師的心得分享和書單及教甄準備方向都很精采。

書單及各種競賽考題,令人讚為觀止。

書,寸絲手邊雖是有幾本,但多束之高閣,無瑕細讀,偶爾翻閱。

各式考題,難易各有高低,考試方向與教甄亦有遠近,但亦無暇細分。

而寸絲準備教甄過程中,多是以考古題主,苦思、爬文、討論及請教其他老師。

數學科的考古題,可謂眾多,光是做考古題,幾乎就是做不完了,

幸有 Mathpro 上的討論串,可供參考查閱,

準備之時,對每份考題的每一題,都不輕易放過,雖有一解,但若覺粗糙、麻煩,

則應深思其它妙之解,或爬文、請教他人。

今日野人獻曝,整理歸類部分教甄試題,希望可供其他準備教甄的老師們參考。

其內容少部分附有解法,多數題目則留予網友們自行做答

每題亦附出處,如有需要,可自行在 Mathpro 上搜尋該份試題的討論串

單元內容

  • 數列
  • 級數
  • 方程式
  • 不定方程
  • 整理論
  • 多項式
  • 根與係數關係
  • 二次函數
  • 函數圖形的對稱性
  • 排列組合
    --------------------------2013.03.24 增加--------------------------
  • 三角
  • 向量、斜坐標
  • 幾何
    --------------------------2013.03.29 增加--------------------------
  • 柯西不等式
  • 算幾不等式
  • 三角不等式、凸函數不等式
  • 極值問題
    --------------------------2013.04.04 增加--------------------------
  • 圓錐曲線
  • 矩陣、行列式
  • 微積分


--------------------------2013.05.30 補充-------------------------------

前文 superlori 的心得提到:「觸類旁通、建立筆記、一題多解」。這一點寸絲也十分贊同,大概除了筆記做得少一些以外,其它兩點都實行了。以下來談談在這方面的經驗:

相信考古題大家都在做,同樣的考古題練習,要考得比人好,當然是下的功夫要比其它人多。一題不只是一題,還要做更深更多的思考,實力才會更進一步。

舉例來說:102 全國聯招考了一題:高斯符號 [x],表示不大於 x 的最大整數值。試求 (3+2)2012  的個位數字。我的做法是 (3+2)2012=(5+26)1006+(526)10061 。然後兩項式展開,有根號的互消,沒根號的幾乎都是 10 的倍數,所以答案大概就出來了。

有時間才看一次,重新想想,便開始胡思亂想。是否有其它類似題,如何變化,萬一不是這麼剛好可以乘出一堆 10 的倍數怎麼辦?要是改問除以 7  的餘數,那如何?結果就想了另一個方法和萊因哈特weiye 兩位老師的作法相同,也就是利用遞迴數列,觀察有限的循環節。

順帶放個題目給諸位練習,99南港高工:設 [x] 表示不大於 x 的最大整數,求 21+52010  除以 7 的餘數。

教甄的試題,坦白說題目就那些(好大的那些範圍),但總不能期望數據一樣,一成不變。當這個類題出現時,但數據不同,或許原先的「特例」解法就不適用,因此做考古題的時候,不只是善完成那份題目,更進一步的問問,是個巧合,還是一般性的做法?否則真的出現,大概就是「啊!~這題我看過做過,但...做不出來」,如果事先想過,結局就是反過來:「你會而別人不會」。

再舉個例子:求 sinnsinn2sinn3sinn(n1)=n2n1。這個式子或許知道,或許推得出來。做完之後聯想:那 cos 的連乘積呢?
於是乎,又可以做出一個式子  cos2n+1cos22n+1cosn2n+1=12n,其中奇數是因為:分母如果是偶數,那必有一項是 cos2=0,而得乘積就無聊了。那麼問又可改成分母偶項,拿掉 cos2 那項,就像是99文華高中:cos10cos20cos30cos40cos50cos60cos70cos80= _________。
Joy091 老師 利用餘角關係把它換成 sin,問題就解決了。
餘角關係,又給了一個新的想法,是不是 cos2n+1cos22n+1cosn2n+1 也可換成 sin 處理?試著一寫得到 sin4n+2sin34n+2sin4n+2(2n1)
我們又得到一個 sin 連乘積的推廣問題。

101 武陵高中也考了一題:sin1sin3sin5sin87sin89
而這個問題我正好想過,還推廣成一般的情形:nN, =n,求 n1k=0sin(+k)

除了自己胡思亂之外,還有 Mathpro 上網友的挑戰,例如102 武陵高中:求函數 f(x)=sinxsin9x+cosxcos9x 的值域。一開始我知道 5 倍角可以做,但不想用 5 倍處理,嘗試之後,失敗了。而隔了一段時間後,有網友詢問是不否有非 5 倍角的做法,而再次挑戰。

發展不同的解法,對這一題的分數而言,可能沒有什麼意義,但考題非是一成不變,「觸類旁通、一題多解」,正是累積自己實力的方法,即使題目改了,方法一失效,還有方法2,這就是額外下功夫的收獲。

-------------------------- 2014.03.29 修正--------------------------
感謝 natureling、Redik、smartdan 指出多處筆誤及誤植,及其它計算錯誤。檔案中,以用紅字標示
新舊的內容差異不大,主要是修正錯誤,合併同類型題目,以及增加 ★ 標示部分較難的問題,基本上看過舊版的就不需新版了

--------------------------103.07.20 --------------------------
Mathnote0718,主要更動如下

  • 將重覆出現的題型,以同題號子題標示,以量表示其重要性。
  • 以★標記部分難題,這些難題其實大多數可能沒有很重要。
  • 將部分主題(子題)中的少數較不重要題目刪除或移至該子題結尾的倒數幾題。
  • 增加第 21 主題:其它,包含其它常考題但未列入前 20 個主題,如二進位、數學歸納法、連分數、變量中的不變數…


102.10.10版主補充
若你發現錯誤的地方,可以到寸絲的部落格回應
http://tsusy.wordpress.com/2013/ ... %AF%87/#comment-157

110.8.21
經網友listenasics同意後將文章轉到這裡
寸絲老師筆記 第一次手寫(全):https://reurl.cc/no80d8
(檔案有423MB,建議使用電腦下載)
補充:上面有些題目,我第一次解法的觀念是錯的,我印下來寫第二次甚至到第三次才把觀念完全補到正確。

其餘請見原文章https://www.ptt.cc/bbs/studyteacher/M.1629008566.A.F8B.html

附件

math note 01-10 by tsusy.pdf (1.77 MB)

2014-3-29 13:53, 下載次數: 23864

最後更新 2013.03.29

math note 11-13 by tsusy.pdf (1.93 MB)

2014-3-29 13:53, 下載次數: 20275

最後更新 2013.03.29

math note 14-17 by tsusy.pdf (1.45 MB)

2014-3-29 13:53, 下載次數: 18819

最後更新 2013.03.29

math note 18-20 by tsusy.pdf (1.59 MB)

2014-3-29 13:53, 下載次數: 21002

最後更新 2013.03.29

網頁方程式編輯 imatheq

TOP

回復 19# cherryhung 的帖子

同感,寸絲自認為是實力存在考場之外的人。但實際情況上,其它人也好不到哪去吧,不是只有你一個人在緊張在懊惱。

為什麼?因為,考試是很現實的限時作答。因為有時限,所以做題的順序必然是先挑看過會寫的題型

寫完之後,剩下來的事:檢查驗算或處理其它題目。有限時間加上過多的空格,就會發生,這題想想...沒有頭緒

換一題,也許另一題比較簡單。就這樣換來換去,時間就這樣渡過,也許做出了幾題,又遺留了幾題。

幾次的教甄之後,發現其實計算錯誤及遺漏、看錯題,不比這些遺珠之憾來得少

與其把時間花在上面,也許不如仔細驗算檢查 (當然每個人的情況不一樣)

前文 weiye 老師說了限時模擬考試。我也是採同樣的做法,只是通常限制時間是更短的 80 分鐘或 90 鐘。

把時限練好,至於和考場的時差,和拿來做什麼,就看自己的決定。

還有,沒有人不犯錯,即使像我今年無壓力地偷某試題時,有也有一題忘記平方 a2+b2=(a2+b2)2 , 一題不小心看錯題目

類似的錯誤,很頻繁常見,而我的態度是

1. 降低出錯率,每場考試,除了筆試過或不過,還要算算自己這場發揮了多少?是 7 成、8 成,還是只有 6 成?

2. 如果發揮的比上不去,那就提升分母,也就是更加緊地練習筆試,以增提升功力,練到,即使只有 6 成發揮,也要考進複試
網頁方程式編輯 imatheq

TOP

發新話題
最近訪問的版塊