回覆 3# CYC 的帖子
單選 9.
當 \( x \approx 0 \) 且 \( x \neq 0 \) 時,
\( \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^{3}}=\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^{3}}\cdot\frac{\sqrt{1+\tan x}+\sqrt{1+\sin x}}{\sqrt{1+\tan x}+\sqrt{1+\sin x}} \)
故 \( \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^{3}}=\frac{\tan x-\sin x}{x^{3}(\sqrt{1+\tan x}+\sqrt{1+\sin x})}=\frac{\tan x-\sin x}{x^{3}}\cdot\frac{1}{\sqrt{1+\tan x}+\sqrt{1+\sin x}} = \frac{\sin x}{x\cos x}\cdot\frac{1-\cos x}{x^{2}}\cdot\frac{1}{\sqrt{1+\tan x}+\sqrt{1+\sin x}} \)
由羅必達法則或泰勒展開(級數),易得 \( \displaystyle \lim_{x\to0}\frac{1-\cos x}{x^{2}}=\frac{1}{2} \)
再由極限運算性質,得所求為 \( 1 \times \frac12 \times \frac 12 = \frac14 \)