14 題
試求\(\displaystyle \lim_{n\to \infty}\sum_{k=1}^n \frac{(k+n)\sqrt{2kn+k^2}}{n^3}\)之值。
(我的教甄準備之路 黎曼和和夾擠定理,
https://math.pro/db/viewthread.php?tid=661&page=3#pid23615)
[解答]
這是用黎曼和求極限
\(\displaystyle \sum\frac{1}{n}(1+\frac{k}{n})\sqrt{\frac{2k}{n}+(\frac{k}{n})^{2}}\to\int_{0}^{1} (1+x)\sqrt{2x+x^{2}}dx \)
然後變數代換 \( y=x^{2}+2x,\, dy=2(x+1)dx \)
\(\displaystyle \int_{0}^{1}(1+x)\sqrt{2x+x^{2}}dx=\frac{1}{3}y^{\frac{3}{2}}\Bigr|_{0}^{3}=\sqrt{3} \)