第十二題, 仿瑋大對巴貝奇定理的講解, 不知道可以不可以:
令
g1(x)=f(x+d)−f(x), 則
g1(x)為二次,
令
g2(x)=g1(x+d)−g1(x), 則
g2(x)為一次,
令
g3(x)=g2(x+d)−g2(x), 則
g3(x)為0次.
故
g3(x+d)−g3(x)=0.
依序代入
g3
g2
g1定義, 得
0=======g3(x+d)−g3(x)[g2(x+2d)−g2(x+d)]−[g2(x+d)−g2(x)]g2(x+2d)−2g2(x+d)+g2(x)[g1(x+3d)−g1(x+2d)]−2[g1(x+2d)−g1(x+d)]+[g1(x+d)−g1(x)]g1(x+3d)−3g1(x+2d)+3g1(x+d)−g1(x)[f(x+4d)−f(x+3d)]−3[f(x+3d)−f(x+2d)]+3[f(x+2d)−f(x+d)]−[f(x+d)−f(x)]f(x+4d)−4(x+3d)+6f(x+2d)−4f(x+d)+f(x)
[
本帖最後由 David 於 2014-5-11 08:56 PM 編輯 ]