Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing
button on the jsMath control panel.
jsMath
早晚都要做的事,晚做不如早做。
假如你做了,你就會有力量。
註冊
登入
會員
幫助
Math Pro 數學補給站
»
高中的數學
» 100中壢高中
‹‹ 上一主題
|
下一主題 ››
發新話題
發佈投票
發佈商品
發佈懸賞
發佈活動
發佈辯論
發佈影片
打印
100中壢高中
JOE
發私訊
加為好友
目前離線
1
#
大
中
小
發表於 2011-5-31 02:07
顯示全部帖子
第九題 暴力另解
K^2C(k,3)=(k+2)(k+1)C(k,3)-3(k+1)C(k,3)+C(k,3)
=20C(k+2,5)-12C(k+1,4)+C(k,3)
將上式k=3~18累加後:原式=20C(21,6)-12C(20,5)+C(19,4)=19x3x17x4x233=903108
(將三項列式後,先提公因數)
不好意思 不知道怎麼打符號 很凌亂
想請問填充第四,第八
UID
811
帖子
44
閱讀權限
10
上線時間
129 小時
註冊時間
2011-5-29
最後登入
2018-5-29
查看詳細資料
TOP
JOE
發私訊
加為好友
目前離線
2
#
大
中
小
發表於 2011-5-31 02:20
顯示全部帖子
自己回第四題
將左式展開後:C(n,0)m^0‧n^n+C(n,1)m^1‧n^(n-1)+‧‧‧+C(n,n-1)m^(n-1)‧n=2320
觀察可得左式必為n^2之倍數 又2320=2^4‧5‧29
因此n必為2或4 代回原式可得(m,n)
UID
811
帖子
44
閱讀權限
10
上線時間
129 小時
註冊時間
2011-5-29
最後登入
2018-5-29
查看詳細資料
TOP
JOE
發私訊
加為好友
目前離線
3
#
大
中
小
發表於 2011-5-31 03:28
顯示全部帖子
請問第六題的解法
我討論的方法如下 覺得容易錯
首先利用對稱性改討論 x+y+z+u=12的狀況 接著列出所有可能點數的組合
(1119),(1128),(1137),...,(1344),(2226),(2235),(2244),(2334),(3333)
再依條件討論xyzu可能的排列狀況,加總之.
UID
811
帖子
44
閱讀權限
10
上線時間
129 小時
註冊時間
2011-5-29
最後登入
2018-5-29
查看詳細資料
TOP
‹‹ 上一主題
|
下一主題 ››
最近訪問的版塊
選修的數學課程
IV:線性代數
II:有限數學
控制面板首頁
編輯個人資料
積分交易
積分記錄
公眾用戶組
基本概況
版塊排行
主題排行
發帖排行
積分排行
交易排行
上線時間
管理團隊