4.
\(\Delta ABC\)中,\(\overline{AB}=\overline{AC}=2\),\(\overline{BC}\)邊上有100個相異點\(P_1,P_2,P_3,\ldots,P_{100}\),若\(m_i=\overline{AP_i}^2+\overline{BP_i}\cdot \overline{CP_i}(i=1,2,\ldots,100)\),則\(m_1+m_2+m_3+\ldots+m_{100}\)之值為何?
[解答]
114.5.5補充
在\(\triangle ABC\)中,\(\overline{AB}=\overline{AC}=2\),如果\(\overline{BC}\)邊上有100個相異的點\(P_1\)、\(P_2\)、\(\ldots\)、\(P_{100}\),且設\(a_k=\overline{AP_k}^2+\overline{BP_k}\cdot \overline{P_kC}\),其中\(k=1,2,\ldots,100\),則\(a_1+a_2+a_3+\ldots+a_{100}\)之值為下列何者?
(A)100 (B)200 (C)300 (D)400 (E)600
(114香山高中,
https://math.pro/db/thread-3990-1-1.html)