回覆 3# kobelian 的帖子
3.
設矩陣\(A=\left[a_{ij}\right]_{2\times 2},B=\left[b_{ij} \right]_{2\times 2}\)中各元皆為0或1,試問相乘所得\(AB\)共有多少種可能?
[解答]
因為 \(\det(AB)=\det(A)\det(B)\),
因此 \(\det(AB)\) 可能取值 \(-1,0,1\),
對於 \(AB\) 的每一元只能取值 \(0,1,2\),
若主對角線乘積為 \(4\),則有 \(1\) 種副對角線取值 ;
若主對角線乘積為 \(2\),則有 \(3\) 種副對角線取值 ;
若主對角線乘積為 \(1\),則有 \(8\) 種副對角線取值 ;
若主對角線乘積為 \(0\),則有 \(6\) 種副對角線取值 ;
因此共有 \(1+2\times3+5\times6+8=45\) 種不同的\(AB\)