Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing
button on the jsMath control panel.
jsMath
除非太陽不再升起,
否則不能不達到目標。
註冊
登入
會員
幫助
Math Pro 數學補給站
»
高中的數學
» 2006 MPSI 入學考試 第8題
‹‹ 上一主題
|
下一主題 ››
發新話題
發佈投票
發佈商品
發佈懸賞
發佈活動
發佈辯論
發佈影片
打印
2006 MPSI 入學考試 第8題
克勞棣
發私訊
加為好友
目前離線
1
#
大
中
小
發表於 2020-5-18 01:34
顯示全部帖子
回復 1# JingLai 的帖子
我只會證明第1題
顯然a^n-1≡0 (mod a^n-1),則
a^n≡1 (mod a^n-1)
a^(nk)≡1^k≡1 (mod a^n-1)
(a^k)^n≡1 (mod a^n-1)
b^n≡1 (mod a^n-1)
b^n-1≡0 (mod a^n-1)
即(b^n-1)皆為(a^n-1)之倍數
故u_n皆為正整數
UID
2952
帖子
147
閱讀權限
10
上線時間
108 小時
註冊時間
2020-1-9
最後登入
2022-7-13
查看詳細資料
TOP
‹‹ 上一主題
|
下一主題 ››
控制面板首頁
編輯個人資料
積分交易
積分記錄
公眾用戶組
基本概況
版塊排行
主題排行
發帖排行
積分排行
交易排行
上線時間
管理團隊