回覆 8# CYC 的帖子
9.
在菱形\(ABCD\)中,\(\angle DAB=60^{\circ}\),將\(\triangle ABD\)沿對角線\(\overline{BD}\)折起得\(\triangle A_1BD\),使得\(A_1BD\)面與\(CBD\)面所夾二面角為\(60^{\circ}\),設向量\(\vec{DA_1}\)與向量\(\vec{BC}\)的夾角為\(\theta\),則\(cos\theta=\)
[解答]
架設坐標
\(A(0,0,0,),B(2,0,0),C(3,\sqrt{3},0),D(1,\sqrt{3},0)\)
利用兩面角\(60^{\circ}\)條件求出\(A_1 (\displaystyle \frac{9}{4},\frac{3}{4}\sqrt{3},\frac{3}{2})\)
\(\displaystyle \vec{DA_1}=(\frac{5}{4},\frac{-\sqrt{3}}{4},\frac{3}{2})\)
\(\displaystyle \vec{BC}=(1,\sqrt{3},0)\)
平移一下知道\(\theta\)是銳角
計算得\(\cos\theta =\displaystyle \frac{1}{8}\)