Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
發新話題
打印

112基隆女中

填充8.

8.
平面上,PAB上一點滿足AP=5BP=3Q為平面上一點滿足AQ=7BQ=3,若以AB為直徑作一圓C,自PQ作射線PQ交圓C於點R,試求PR的長度。
[解答]
cosABQ=(8^2+3^2-7^2)/(2*8*3)=1/2 => 角BPQ=60度,
設圓心為C(0,0),P(1,0),PR=t => R(1+t/2,ㄏ3/2*t)
CR^2=1+t+t^2/4+3t^2/4=t^2+t+1=4^2 => t^2+t-15=0 , t=(-1+ㄏ(1^2-4*1*(-15)))/(2*1)
故所求=t=(-1+ㄏ61)/2

TOP

填充2.

2.
[2023]的個位數為   。(1618為黃金比例)
[解答]
令 a=(1+ㄏ5)/2為黃金比例 , b=(1-ㄏ5)/2 , f(n)=a^n+b^n
則 a,b 是 x^2=x+1 的兩根 , 易知 f(n+2)=f(n+1)+f(n) , f(1)=1,f(2)=3
觀察 f(n)除以10之餘數得 1,3,4,7,1,8,9,7,6,3,9,2  ,1,3........ 可知是12個一循環 , 2023=12*168+7
故 f(2023)=a^2023+b^2023除以10之餘數=f(7)除以10之餘數=9, 又 -1<b^2023<0 => [a^2023] 除以10之餘數=9 即為所求

TOP

發新話題
最近訪問的版塊