#證明第2題
\(A,B\)皆為\(n\)階方陣,若\((A+B)\)為可逆方陣,證明:\(A(A+B)^{-1}B=B(A+B)^{-1}A\)。
[解答]
由\( (A+B)^{-1}(A+B)=I_n \),推知\( (A+B)^{-1}A+(A+B)^{-1}B=I_n \),等式兩邊左乘A,得\( A(A+B)^{-1}A+A(A+B)^{-1}B=A \)...(1)
由\( (A+B)(A+B)^{-1}=I_n \),推知\( A(A+B)^{-1}+B(A+B)^{-1}=I_n \),等式兩邊右乘A,得\( A(A+B)^{-1}A+B(A+B)^{-1}A=A \)...(2)
由(1)及(2),\( A(A+B)^{-1}B =A-A(A+B)^{-1}A=B(A+B)^{-1}A\)