發新話題
打印

113嘉科實中雙語部

5.
甲乙兩人輪流擲一公正硬幣,第一局甲先擲,以先擲出正面者為勝,而上一局的輸者下一局可先擲,試求第\(n\)局甲勝的機率為   。(以\(n\)表示)
https://math.pro/db/viewthread.php?tid=1335&page=3#pid5349

6.
已知\(A(4,0),B(2,2)\)是橢圓\(\displaystyle \frac{x^2}{25}+\frac{y^2}{9}=1\)內的點,若\(M\)為橢圓上動點,則\(\overline{MA}+\overline{MB}\)的最大值為   

設\(F_1(-4,0),F_2(4,0)\)為橢圓\(\displaystyle \frac{x^2}{25}+\frac{y^2}{9}=1\)的兩焦點,且\(A(2,2)\)在橢圓的內部。若\(P\)為橢圓上任意一點,證明\(10-2\sqrt{2}\le \overline{PA}+\overline{PF_1}\le 10+2\sqrt{2}\)。
(95高中數學能力競賽 嘉義區複賽試題一)
我的教甄準備之路 兩根號的極值問題,https://math.pro/db/viewthread.php?tid=661&page=3#pid22174

TOP

發新話題
最近訪問的版塊