回復 15# ibvtys 的帖子
計算第 2 題
竹東高中的多元選修課程共開設了六門選修課:A、B、C 為第一類選修課,D、E、F為第二類選修課,要求每名同學須從中選修三門課,第一類選修課至少要選兩門。現有甲、乙、丙三位同學選課,則任意一位同學與其他兩位同學均至少有兩門相同選修課的選法
共有幾種?
[解答]
小弟的做法如下,參考一下,應該算慢
每人的選課法有以下 10 種
ABC、ABD、ABE、ABF、ACD、ACE、ACF、BCD、BCE、BCF
甲、乙、丙三人選課且符合題意的情形:
(1) 三同:10種
(2) 兩同一異
(i) 兩同是 ABC:9種
(ii) 一異是 ABC:9種
(iii) 沒有 ABC:9 * 4 = 36種
先假設兩同是 ABD、一異有 ABE、ABF、ACD、BCD 這 4 種選擇,其餘情形的兩同亦是 4 種
再排列,有 (9 + 9 + 36) * 3!/2! = 162 種
(3) 三異
(i) 有一異是 ABC:(9 * 4) / 2 = 18 種
再假設另一異是 ABD、最後一異有ABE、ABF、ACD、BCD 這 4 種選擇,由於會重複,故要除以 2
(ii) 三異中都沒有 ABC:6種
(ABD、ABE、ABF) 、(ACD、ACE、ACF)、(BCD、BCE、BCF)
(ABD、ACD、BCD)、(ABE、ACE、BCE)、(ABF、ACF、BCF)
再排列,有 (18 + 6) * 3! = 144 種
所求 = 10 + 162 + 144 = 316 種