發新話題
打印

112基隆女中

回覆 6# acc10033 的帖子

填充第 6 題
設坐標平面上三點\(A(1,0)\)、\(B(0,1)\)、\(P(x,y)\),已知經平面線性變換\(T\)作用後,\(A\)點被映射至點\(A'(1,\sqrt{3})\)、\(B\)點被映射至點\(B'(-\sqrt{3},1)\),而\(P\)點被映射至點\(P'\)。若點\(P\)先對直線\(L\):\(y=2x\)鏡射,再經過\(T\)作用後,其結果相當於點\(P\)先經過\(T\)作用,再對直線\(L'\):\(y=mx\)鏡射,則\(m\)之值為   
[解答]
矩陣 T =
[1   -√3]
[√3    1]

不妨設 P(2,-1),它對 y = 2x 鏡射後是 Q(-2,1)
Q 經 矩陣 T 變換後是 Q'(-2 - √3,1 - 2√3)
P 經 矩陣 T 變換後是 P'(2 + √3,-1 + 2√3)
直線 P'Q' 的斜率 = -1/m
求出 m = (-8 - 5√3) / 11

TOP

回覆 13# happysad 的帖子

填充第 1 題
滿足\([\log\sqrt{n}]=[\sqrt{\log n}]\)的最大正整數\(n\)為   
[解答]
[log√n] = [√logn] = k

k <= log√n < k + 1
2k <= logn < 2k + 2

k <= √logn < k + 1
k^2 <= logn < k^2 + 2k + 1

當 k = 0 ~ 2 時,兩不等式有交集
當 k = 3,n >= 10^6 時,兩不等式無交集
故所求為 999999

TOP

發新話題