計算第1題
設方程式\(x^3-2x^2-3x+1=0\)之三根為\(\alpha\)、\(\beta\)、\(\gamma\),試求以\(\displaystyle \frac{\alpha-1}{2\alpha+3}\)、\(\displaystyle \frac{\beta-1}{2\beta+3}\)、\(\displaystyle \frac{\gamma-1}{2\gamma+3}\)為三根之三次方程式。
[提示]
\(\begin{align}
& y=\frac{x-1}{2x+3} \\
& x=\frac{3y+1}{1-2y} \\
\end{align}\)
代回原方程
114.4.21補充
If \(\alpha,\beta,\gamma\) are the roots of \(x^3-x-1=0\), compute \(\displaystyle \frac{1+\alpha}{1-\alpha}+\frac{1+\beta}{1-\beta}+\frac{1+\gamma}{1-\gamma}\).
(1996Canadian Mathematical Olympiad,
https://cms.math.ca/wp-content/uploads/2019/07/sol1996.pdf)
已知\(p\ne 0\),\(\alpha\)、\(\beta\)、\(\gamma\)為\(x^3-px+p^3=0\)的三個根,試以\(p\)表示\(\displaystyle \frac{\alpha-p}{\alpha+p}+\frac{\beta-p}{\beta+p}+\frac{\gamma-p}{\gamma+p}\)之值。
(114高雄中學,
https://math.pro/db/thread-3962-1-1.html)