發新話題
打印

101建國中學二招

自己解的填充5和6
有錯請不吝指正

另想請教填充1,2,7,8

5.
設函數\(f(x)=-x^3+3x+2\)分別在\(x_1\)、\(x_2\)處取得極小值、極大值。在\(xy\)平面上點\(A\)、\(B\)的座標分別為\((x_1,f(x_1))\)、\((x_2,f(x_2))\),該平面上動點\(P\)滿足\(\vec{PA}\cdot \vec{PB}=4\),點\(Q\)是點\(P\)關於直線\(y=2(x-4)\)的對稱點,求動點\(Q\)的軌跡方程為   
[解答]
∵\( f(x)=-x^3+3x+2 \Rightarrow f'(x)=-3x^2+3=0 \Rightarrow x=\pm 1 \)
令\( A(-1,0) \),\( B(1,4) \),\( P(x,y) \)
∴\( \vec{PA} \cdot \vec{PB}=0 \Rightarrow (x+1,y)(x-1,y-4)=0 \Rightarrow x^2+(y-2)^2=5 \),為一圓
因為點\( Q \)是點\( P \)對\( y=2(x-4) \)的對稱點
考慮圓心\( (0,2) \)對\( y=2(x-4) \)的對稱點為\( (8,-2) \)
∴\( (x-8)^2+(y+2)^2=5 \)

6.
已知複數\(\displaystyle a=\frac{1}{4}+\frac{\sqrt{3}}{4}i\),若\(z_n=1024a^n\),其中\(n\)為正整數,則絕對值\(|\;z_9-z_{11}|\;=\)   
[解答]
\( \displaystyle |\; z_9-z_{11} |\;=|\; 1024a^9-1024a^{11} |\;=1024 \cdot |\; a |\;^9 \cdot |\; 1-a^2 |\;=\frac{\sqrt{21}}{2} \)

TOP

發新話題