Processing Math: 64%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
發新話題
打印

98高中數學能力競賽

題目:

2. 空間中一四面體的四個頂點A(0,0,1),B(2,4,0),C(0,0,0),D(4,2,0), 平面E通過A點與BD中點且與BC有交點 , 若平面E將此四面體分成兩塊 , 其中一塊的體積為原四面體的 1/3 , 求E的方程式 ?


解答:

設 BD 的中點為 M,且 E 與 BC 交於 N 點,

因為由 A 點往 BCD 平面作高,則

可發現四面體 ABNM 與 四面體 ABCD 同高,

因此,

四面體 ABNM 與 四面體 ABCD的體積比等於

Δ BNM 與 Δ BCD 的面積比。

依題意,

情況一:

若 四面體 ABNM = (1/3) 四面體 ABCD的體積,

則,Δ BNM = (1/3) Δ BCD 的面積

  (1/2)* BM*BN* sin∠NBM = (1/3)* (1/2) * BD* BC * sin∠CBD

  且由 BM = (1/2)BD,可得 BN = (2/3) BC

  由分點公式,可得 N 點坐標 ⇒ 由 A,N,M 三點坐標,可得 E 的方程式。


情況二:

若 四面體 ABNM = (2/3) 四面體 ABCD的體積,

則,Δ BNM = (2/3) Δ BCD 的面積

  但顯然與 Δ BNM面積 ≦ Δ BCM 面積 = (1/2) Δ BCD 面積,矛盾。











另外,

由於台灣師大數學系網頁上 97, 98 高中數學能力競賽的網頁資料(含考題)似乎連結有問題,

所以,小弟把 bugmens 所提供的資料上傳到本站空間永久留存,以下附上兩者考題資料的連結:

  97 高中數學能力競賽考題:https://math.pro/temp/hs_math_97.rar or http://140.122.140.4/exam/hs/97/

  98 高中數學能力競賽考題:https://math.pro/temp/hs_math_98.rar or http://140.122.140.4/exam/hs/98/

多喝水。

TOP

題目:


1. 有各張分別標有1,2,3.....n 的一疊n張卡片 . 洗過卡片後 , 重複進行以下操作 : 若最上面一張卡片的標號是k , 則將前k張卡片的順序顛倒 ;
    例如 : 若 n=4 且卡片排成3124 , 則操作一次後的卡片將排列成2134 . 證明 : 經過有限次操作後 , 標號1的卡片會在最上面.



分析:

我比較喜歡稱最上面的牌為第一張牌,

先觀察一下:依洗牌規則,每次洗牌的時候,若第一張牌是 K,則伴隨洗牌規則而發生的事就是,第一張牌就會跟第 K 張牌交換。

      至於中間其它牌的交換,因為不太重要,所以不管它中間牌怎麼換,至少第一張跟第 K 張會互換是必然的。


解答:

  假設無論如何洗牌,第 1 張牌都不會是 1

  亦即,在重複無窮次步驟之後,第一張牌一直都不會是 1,

  則因為牌只有有限張,所以第一張牌的標號最後必定會是某些數字在重複出現

  (且至少有兩個不是 1 的數字在重複,否則會有顯見的矛盾),

  設第一張牌標號的重複數字之中最大者為 M (注意: M 必不等於 1),

  則當某次洗牌前,輪到第一張牌為 M 時,

  在該次洗牌之後,

  第 1 張的標號必小於 M,

  且依洗牌規則,

  因第 1 張卡片標號小於 M,所以洗牌所交換的卡片必無法換到第 M 張卡片,

  故,第一張牌必無法再換回 M,此與 M 的重複出現性相矛盾。

  故,在有限次的洗牌次數之內,第一張牌必定會變為 1.

多喝水。

TOP

題目:

3. 設 xyz 為實數且皆不為零,90909090

x2+y2+z=0x2cos+isin+y2cos+isin+iz=0  , 求 +=?




解答:

x2cos+isin+y2cos+isin+iz=0 

x2cos+y2cos+ix2sin+y2sin+z=0 

因為 xyzcossincossin 都是實數,所以

x2cos+y2cos=0 且 x2sin+y2sin+z=0......(*)


(1)

因為 90909090

所以 cos0cos0

且由 x2cos+y2cos=0,可得 x2cos=0y2sin=0

因為 xy 都是非零實數,所以 cos=0cos=0




(2)

由題目所給之 x2+y2+z=0z=x2y2 帶入 (*),

可得 x21sin+y21sin=0 

因為  1sin01sin0

所以,可得 x21sin=0 y21sin=0 

且因為 xy 都是非零實數,所以 1sin=01sin=0

可得 sin=1sin=1




故,由上二者,可得 \alpha=\beta=90^\circ \Rightarrow \alpha+\beta=180^\circ.

多喝水。

TOP

題目:

2.設 x,y,z 屬於實數 , 滿足 x^2+y^2+z^2=1 , 求 xy+yz+zx 的最小值 = ?



解答:

由科西不等式,

\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\geq\left(xy+yz+zx\right)^2


可求得 xy+yz+zx 的範圍。



**

.  感謝老王老師提醒(詳見本討論串後方回覆),

  利用科西找出來的 -1 只是下界,並非最小值(實際最小值為 \displaystyle -\frac{1}{2} ),

  因為由科西不等式所得的下界部分的等號並不會成立。

  ^__^

  以下如老王老師於本討論串後方之回覆,

  可由 \displaystyle xy+yz+zx = \frac{1}{2}\left[\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)\right]\geq\frac{1}{2}\left[0^2-1\right]=-\frac{1}{2}

  得到 xy+yz+zx 的下界 \displaystyle -\frac{1}{2}

  且空間中存在同時滿足 x+y+z=0 (通過原點的平面方程式)

            與 x^2+y^2+z^2=1(以原點為球心、1 為半徑的球) 的共同交點 \left(x,y,z\right).

  故,xy+yz+zx 的最小值為 \displaystyle -\frac{1}{2}.

多喝水。

TOP

題目:

1. 假設5根電線桿,其中兩根會漏電,以致於停在它們上面的小鳥會立刻被電昏而摔落地面。

 今有五隻小鳥各自獨立的隨機選擇其中一根電線桿逗留休息,試計算只有兩根電線桿上有小鳥的機率。



解答:


分母=5^5.


分子=不漏電的三根中選取兩根,搭配
      case 1. 不漏電那兩根恰有5隻鳥且每根至少有一鳥
      case 2. 不漏電那兩根恰有4隻鳥且每根至少有一鳥,漏電的那兩根共恰有1鳥
      case 3. 不漏電那兩根恰有3隻鳥且每根至少有一鳥,漏電的那兩根共恰有2鳥
      case 4. 不漏電那兩根恰有2隻鳥且每根至少有一鳥,漏電的那兩根共恰有3鳥
   的方法數

  = C^3_2\left\{C^5_5\left(2^5-C^2_1\cdot 1^5\right)+C^5_4\left(2^4-C^2_1\cdot 1^5\right)\times2+C^5_3\left(2^3-C^2_1\cdot 1^5\right)\times2^2+C^5_2\left(2^2-C^2_1\cdot 1^5\right)\times2^3\right\}.

多喝水。

TOP

發新話題