一、計算題,第 5 題
已知 \(x,y,z\) 均為實數,且 \(\displaystyle \left\{ {\begin{array}{*{20}{c}}
{{2^x} + {3^y} + {5^z} = 7} \\
{{2^{x - 1}} + {3^y} + {5^{z + 1}} = 11} \\
\end{array}} \right.\),
若 \(t = {2^{x + 1}} + {3^y} + {5^{z - 1}}\),試求 \(t\) 的範圍.
解答:
令 \(\displaystyle a=2^x, b=3^y, c=5^z\),則
\(\displaystyle \left\{ {\begin{array}{*{20}{c}}
{a + b + c = 7} \\
{\displaystyle \frac{a}{2} + b + 5c = 11} \\
\end{array}} \right.\) 且 \(\displaystyle a,b,c>0\),
得此兩平面部分交線段的參數式 \(\displaystyle \left\{ {\begin{array}{*{20}{c}}
{a = 0 + 8k} \\
{b = 6 - 9k} \\
{c = 1 + k} \\
\end{array}} \right.\),
其中 \(\displaystyle a,b,c>0\Rightarrow 0<k<\frac{2}{3}\)
故,
\(\displaystyle t=2a+b+\frac{c}{5}=\frac{31+36k}{5}\)
\(\displaystyle \Rightarrow \frac{31}{5}<t<11.\)
第 8 題
設整數數多項式 \(A\left(x\right)\) 除以 \(x^2+1\),餘式為 \(px+q\),
若 \(f\left(A\left(x\right)\right)=pi+q\) 恆成立(其中 \(i\) 為虛數單位),
求 \(\displaystyle \frac{{f\left( {{x^{10}} + x + 1} \right)}}{{f\left( {{x^5} + x + 1} \right)}}\) 的值?
解答:
依題意,
因為 \(\displaystyle x^5+x+1\) 除以 \(\displaystyle x^2+1\) 的餘式為 \(2x+1\),
所以 \(\displaystyle f(x^5+x+1)=2i+1.\)
因為 \(\displaystyle x^{10}+x+1\) 除以 \(\displaystyle x^2+1\) 的餘式為 \(x\),
所以 \(\displaystyle f(x^{10}+x+1)=i.\)
故,
\(\displaystyle \frac{{f\left( {{x^{10}} + x + 1} \right)}}{{f\left( {{x^5} + x + 1} \right)}} = \frac{{i }}{2i+1} =\frac{2+i}{5}.\)