發新話題
打印

高中期望值問題

若干枚均勻的硬幣同時擲出﹐若出現 \(k\) 枚正面﹐則可得 \(2^k\) 元﹐

設投擲的硬幣數為 \(n\) 時,所得金額的期望值為 \(a_n\) 元。

\(\displaystyle a_1 = 2^0\times\frac{1}{2}+2^1\times\frac{1}{2}=\frac{3}{2}\) ,且當 \(n\geq1\) 時,\(\displaystyle a_{n+1} = a_n \times\frac{1}{2}+\left(a_n\times 2\right)\times\frac{1}{2}=\frac{3}{2}a_n\) 。

得 \(\displaystyle a_n =\left(\frac{3}{2}\right)^n\),其中 \(n\) 為正整數。

多喝水。

TOP

發新話題
最近訪問的版塊