Board logo

標題: 99明倫高中 [打印本頁]

作者: bugmens    時間: 2010-6-12 22:06     標題: 99明倫高中

題目和答案如附件

附件: 99明倫高中.rar (2010-6-12 22:06, 114.03 KB) / 該附件被下載次數 1832
https://math.pro/db/attachment.php?aid=218&k=9054bd92764f87800286b881ef05909f&t=1571227482
作者: 八神庵    時間: 2010-6-20 00:02

第三題為常考題型
但是....第二小題的答案好像有問題
所公佈的答案應該是A袋金額的期望值....
第六題的第一小題是只要是數學老師都應該閉著眼睛就證出來的基本證明
作者: 八神庵    時間: 2010-6-24 15:02

再度請教各位第4題與第9題的解題思維
作者: iamcfg    時間: 2010-6-24 15:42     標題: 回復 3# 八神庵 的帖子

4. 對64題  猜36題
要超過85分  所以得分是 \(\displaystyle{64+x-\frac{1}{4}(36-x)>=85}\)可以發現要超過85分  至少要對24題
再來要算機率  如果用樣本空間的概念去算
\(\displaystyle{\frac{C^{36}_{24}+C^{36}_{25}+C^{36}_{26}+...+C^{36}_{36} }{2^{36}}}\)

會瘋掉阿~~~~
所以改用另外一個觀念  把他當常態分配去算
猜對率0.5  期望值  0.5*36=18  標準差  \(\displaystyle{\sqrt{36*0.5*0.5}=3}\)
要答對24題  要兩個標準差以上  所以是2.5%


9.  連續  不可微
把高斯函數畫出來  他是一階一階的
當t<2時  面積會是  1*(t-1)
當1<t<2時  面積是 1+2*(t-2)=2t-3
會發現面積函數會是連續的  但是在整數點的部份會是尖點
所以連續不可微

[ 本帖最後由 iamcfg 於 2010-6-24 10:48 PM 編輯 ]
作者: weiye    時間: 2010-6-25 00:52

第 9 題

設函數 \(f:[1,3]\to\mathbb{R}\) 定義為 \(\displaystyle f(x)=\int_1^x\frac{1}{[t]}dt\),其中 \([t]\) 為高斯整數。

(1) \(f\) 在 \(x=2\) 是否連續? (2) \(f\) 在 \(x=2\) 是否可微?



解答:


若 \(1\leq x<2\),則 \(\displaystyle f(x)=\int_1^x 1dt = x-1.\)

若 \(2\leq x<3\),則 \(\displaystyle f(x)=\int_1^2 1dt+\int_2^x \frac{1}{2} dt= \frac{x}{2}.\)

所以畫出 \(y=f(x)\) 的圖形,

可得 \(f\) 在 \(x=2\) 時,連續、不可微。
作者: iamcfg    時間: 2010-6-26 15:33     標題: 回復 5# weiye 的帖子

剛剛才發現我打錯了  哇哈哈
高度是1/2  不是2  XD
作者: dennisal2000    時間: 2011-6-21 22:22

第六題的第一小題是只要是數學老師都應該閉著眼睛就證出來的基本證明

抱歉...我想到只有用 L'Hospital's 證明 , 但他第二小題 要用1來證明 sinx 的微分
那是否表示第一小題不能用 L'Hospital 來證~ 那我就想不到其他方法了~~
另外也想請問第二小題該如何用第一題來證

可否有高人指點一下   謝謝!!
作者: Rokam    時間: 2011-6-21 22:33     標題: 回復 7# dennisal2000 的帖子

第六題在微積分課本也有證明  是基本題
利用sinx<x<tanx  同時除以sinx  
得到1<x / sinx<1/cosx
   =>cosx<sinx / x < 1
再利用夾擠定理
可得到答案為1
第二小題就利用導數定義就能證了
作者: dennisal2000    時間: 2011-6-22 21:09     標題: 回復 8# Rokam 的帖子

十分感謝~  我的基礎太差了>"<...




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0