Board logo

標題: 請教3題數學(三角函數、橢圓、尤拉函數) [打印本頁]

作者: f19791130    時間: 2009-11-1 19:50     標題: 請教3題數學(三角函數、橢圓、尤拉函數)

1.      1. 設x*x+y*y=1,試求x*x – 2xy + 3y*y之最大值和最小值。
A:最大值2 + 根號2;最小值2 - 根號2


2.      2. 一人造衛星其繞行軌道是橢圓,以地心為一焦點,這衛星離地面的最大高度為800公里,
    而離地面的最小高度為200公里,又地球半徑是6400公里,求這橢圓軌道的長軸長和短軸長。
A:長軸長13800公里,短軸長13787公里。


3.      3. 如何證明尤拉函數。

以上3題,煩請高手解答,謝謝!
作者: weiye    時間: 2009-11-1 21:05

第一題

令 \(x=\cos\theta, y=\sin\theta\),則 \(x^2-2xy+3y^2\) 可以利用倍角公式降次,再疊合,可求得最大值與最小值。





第二題

\(a+c=6400+800, a-c=6400+200\)

\(\Rightarrow a=6900, c=300, b=\sqrt{a^2-c^2}=1200\sqrt{33}\)

\(\Rightarrow 2a=13800, 2b\approx13787.\)




第三題

先證明 \(\phi\left(n\right)\) 是 multiplicative,

再證當 \(n=p^k\) 時(其中 \(p\) 是質數,\(k\) 是自然數),\(\displaystyle\phi\left(p^k\right)=\left(1-\frac{1}{p}\right)p^k\),

把兩者合併在一起用,就可以得證了。

詳見 http://en.wikipedia.org/wiki/Euler's_totient_function




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0