Board logo

標題: 113桃園高中 [打印本頁]

作者: kobelian    時間: 2024-4-28 17:00     標題: 113桃園高中

想請問老師  第12題

圖片附件: 985740.jpg (2024-4-28 17:00, 133.88 KB) / 該附件被下載次數 783
https://math.pro/db/attachment.php?aid=7026&k=afddfe842a29d1230a206a735c819688&t=1732277297



圖片附件: 985739.jpg (2024-4-28 17:00, 120.56 KB) / 該附件被下載次數 781
https://math.pro/db/attachment.php?aid=7027&k=b6d4d0f29d7662897268d69deb10ae51&t=1732277297



圖片附件: 985741.jpg (2024-4-28 17:00, 66.65 KB) / 該附件被下載次數 714
https://math.pro/db/attachment.php?aid=7028&k=1bb88ce2f497c743dcc156384e0ee404&t=1732277297


作者: bugmens    時間: 2024-4-28 17:21

6.
雙曲線\(\Gamma\):\(xy=k\),\(k<0\),點\(P(2,2)\),過\(P\)作\(\Gamma\)兩切線,切點為\(A\)、\(B\)點,若三角形\(\Delta PAB\)是正三角形,求\(k=\)   

12.
小明在森林中迷了路,若繼續往前走經過5分鐘後會回到原地,若返回走則有一半的機會於5分鐘後回到原地,另一半的機會於10分鐘走出森林;假設小明向前走的機率為0.6,問小明能夠走出森林所花費的時間期望值為   
相關問題https://math.pro/db/viewthread.php?tid=784&page=1#pid1475

14.
There are two distinguishable flagpoles, and there are 19 flags, of which 10 are identical blue flags, and 9 are identical green flags. Let \(N\) be the number of distinguishable arrangements using all of the flags in which each flagpole has at least one flag and no two green flags on either pole are adjacent. Find the remainder when \(N\) is divided by 1000.
(2008AIMEII,連結有解答https://artofproblemsolving.com/ ... Problems/Problem_12)

17.
多項式\(f(x)=x^{130}-1\),\(g(x)=x^4-x^3+2x^2-x+1\),求\(f(x)\)除以\(g(x)\)的餘式為   

若\((x^{2000}-1)\)除以\((x^4+x^3+2x^2+x+1)\)之餘式為\(ax^3+bx^2+cx+d\),則實數\(a+b+c+d\)之值=   。(最簡分數)
(99中興高中,https://math.pro/db/viewthread.php?tid=1013&page=2#pid2533)

19.
Four regular hexagons surround a square with side length 1, each one sharing an edge with the square, as shown in the figure below. The area of the resulting 12-sided outer nonconvex polygon can be written as \(m \sqrt{n} + p\), where \(m\), \(n\), and \(p\) are integers and \(n\) is not divisible by the square of any prime. What is \(m+n+p\)?
(2022AMC12B,連結有解答https://artofproblemsolving.com/ ... Problems/Problem_25)
作者: anyway13    時間: 2024-4-28 17:37     標題: 第12題

請參考

圖片附件: 4707.jpg (2024-4-28 17:37, 60.29 KB) / 該附件被下載次數 581
https://math.pro/db/attachment.php?aid=7029&k=d9d8c33a50aa80d0aa11d0a1dba3afca&t=1732277297


作者: Superconan    時間: 2024-4-28 18:00     標題: 回覆 1# kobelian 的帖子

老師好,官方有提供 pdf 檔的試題

113.4.28版主補充
因為題目pdf檔超過2mb,我就算版主身分也無法上傳,需要等站長來處理。
作者: kobelian    時間: 2024-4-28 18:49     標題: 回覆 4# Superconan 的帖子

老師  謝謝 因為檔案太大無法上傳  謝謝告知
作者: Ellipse    時間: 2024-4-28 20:13

引用:
原帖由 kobelian 於 2024-4-28 17:00 發表
想請問老師  第12題
#12
假設所求期望值=K
則K=0.6*(5+K)+0.4*0.5*(5+K)+0.4*0.5*10
解出K=30
作者: r91    時間: 2024-5-2 11:19

113桃園高中
想請問老師  第8題
作者: thepiano    時間: 2024-5-2 12:04     標題: 回覆 7# r91 的帖子

第 8 題
x = 2021k,y = 2024k,z = 2027k
x + y + z = 6072k = 2024
k = 1/3

y = 2024/3,x = y - 1,z = y + 1

x^3 + y^3 + z^3 - 3xyz
= (y - 1)^3 + y^3 + (y + 1)^3 - 3y(y - 1)(y + 1)
= 9y
= 6072
作者: acolytej    時間: 2024-5-2 23:00     標題: 回覆 7# r91 的帖子

x^3 + y^3 + z^3 - 3xyz= (x+y+z)(x^2+y^2+z^2-xy-yz-zx)
= (x+y+z)1/2 ((x-y)^2+(y-z)^2+(z-x)^2))
= 2024/2  (1+1+4) =6072
作者: farmer    時間: 2024-5-8 00:56     標題: 是非第一題

有沒有什麼好方法來判斷(1/e)^e跟0.07之間的大小關係呢?
作者: Ellipse    時間: 2024-5-8 10:57

引用:
原帖由 farmer 於 2024-5-8 00:56 發表
有沒有什麼好方法來判斷(1/e)^e跟0.07之間的大小關係呢?
我覺得手算有難度,這個需要用計算機
出這種題目在刁難考生,而且沒什麼鑑別度
除非有先背(1/e)^e約0.065988及交點範圍
否則在場答對的,應該都用猜的
作者: peter0210    時間: 2024-5-9 09:58

請教填充15.
作者: farmer    時間: 2024-5-9 23:54     標題: 回覆 12# peter0210 的帖子

用轉移矩陣:
設狀態1:吃團膳
    狀態2:不吃團膳的第1天
    狀態3:連續不吃團膳的第2天
則轉移矩陣為
0   0.5   1
1   0      0
0   0.5   0
求穩定態
作者: std310185    時間: 2024-5-19 12:40

想請教第16題!
作者: thepiano    時間: 2024-5-19 13:29     標題: 回覆 14# std310185 的帖子

第 16 題
y = x + k 代入 (x - 1)^2 + (y + 2)^2 = 23,可得
2x^2 + (2k + 2)x + (k^2 + 4k - 18) = 0

A(a,a + k)、B(b,b + k)
OA 和 OB 垂直
ab + (a + k)(b + k) = 0
2ab + (a + b)k + k^2 = 0
k^2 + 4k - 18 - (k + 1)k + k^2 = 0
k = 3 or -6
作者: std310185    時間: 2024-5-19 20:00

感謝鋼琴老師^^!
作者: ruee29    時間: 2024-7-22 10:05

整理了桃園高中 填充題解答 供參

附件: 113桃園高中填充題解答.pdf (2024-7-22 10:05, 1.78 MB) / 該附件被下載次數 264
https://math.pro/db/attachment.php?aid=7196&k=542a1f14a67feb1f99816e5f71af2bb6&t=1732277297




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0