6.
卡當諾(Girolamo Cardano,1501-1576)所著的《偉大的技藝(Ars Magna,英譯為The Great art)》書中有一題有趣的三角形面積問題:
There is a triangle the difference between the first and the second sides of which is 1 and between the second and third sides of which is also 1, and the area of which is 3. What is the largest side length? Ans:_______。
(我的教甄準備之路 三角形的面積,https://math.pro/db/viewthread.php?tid=661&page=2#pid2779)
[解答]
設三邊為\(a=x-1,b=x,c=x+1\),最大邊長為\(c=x+1\)
利用海龍公式\(\displaystyle s=\frac{a+b+c}{2}=\frac{3x}{2}\)
\(\displaystyle \sqrt{\frac{3x}{2}\left(\frac{3x}{2}-(x-1)\right)\left(\frac{3x}{2}-x\right)\left(\frac{3x}{2}-(x+1)\right)}=3\)
\(\displaystyle \frac{3x}{2}\cdot \frac{x+2}{2}\cdot \frac{x}{2}\cdot \frac{x-2}{2}=9\)
\(\displaystyle x^2(x^2-4)=48\)
\(x^4-4x^2-48=0\)
\(\displaystyle x^2=\frac{4\pm \sqrt{4^2+4\cdot 1 \cdot 48}}{2}=\frac{4\pm 4\sqrt{13}}{2}=2\pm 2\sqrt{13}\)(負不合)
\(x=\sqrt{2+2\sqrt{13}}\)
最大邊長\(c=x+1=\sqrt{2+2\sqrt{13}}+1\)