Suppose \(r\) is a real number for which
\(\displaystyle \Bigg\lfloor\;r+\frac{19}{100}\Bigg\rfloor\;+\Bigg\lfloor\;r+\frac{20}{100}\Bigg\rfloor\;+\Bigg\lfloor\;r+\frac{21}{100}\Bigg\rfloor\;+\ldots+\Bigg\lfloor\;r+\frac{91}{100}\Bigg\rfloor\;=546\).
Find \(\lfloor\; 100r\rfloor\;\).(For real \(x\),\(\lfloor\; x\rfloor\;\)is the greatest integer less than or equal to \(x\).)
(1991AIME,連結有解答https://artofproblemsolving.com/ ... _Problems/Problem_6)