Board logo

標題: 請教一題倍數問題 [打印本頁]

作者: byron0729    時間: 2022-11-21 13:30     標題: 請教一題倍數問題

\(x\)為正整數,\(1\le x\le 210\),有多少\(x\),滿足\(4^x-x^4\)為7的倍數。

圖片附件: 4BB5A849-472B-4CDD-BA54-1E378CEAE679.jpeg (2022-11-21 13:30, 994.92 KB) / 該附件被下載次數 1364
https://math.pro/db/attachment.php?aid=6494&k=05df275f40e75cf58f63da76d3811833&t=1732264448


作者: satsuki931000    時間: 2022-11-21 14:28

淺見提供,有錯還望不吝指教

若\(\displaystyle x=7p+1 \ or \ 7p+6 \Rightarrow x^4\equiv 1\ (mod\ 7)\)
若\(\displaystyle x=7p+2 \ or \ 7p+5 \Rightarrow x^4\equiv 2\ (mod\ 7)\)
若\(\displaystyle x=7p+3 \ or \ 7p+4 \Rightarrow x^4\equiv 4\ (mod\ 7)\)
其中\(\displaystyle p\in \mathbb{N} \cup \{0 \}\)
並且
若\(\displaystyle x=3k+1  \Rightarrow 4^x\equiv 4 \ (mod\ 7)\)
若\(\displaystyle x=3k+2  \Rightarrow 4^x\equiv 2 \ (mod\ 7)\)
若\(\displaystyle x=3k  \Rightarrow 4^x\equiv 1 \ (mod\ 7)\)
其中\(\displaystyle k \in \mathbb{N} \cup \{0 \}\)

接下就是分類
\(\displaystyle x=3k=7p+1 \Rightarrow x=15+21N\)
\(\displaystyle x=3k=7p+6 \Rightarrow x=6+21N\)
\(\displaystyle x=3k+1=7p+3 \Rightarrow x=10+21N\)
\(\displaystyle x=3k+1=7p+4 \Rightarrow x=4+21N\)
\(\displaystyle x=3k+2=7p+2 \Rightarrow x=2+21N\)
\(\displaystyle x=3k+2=7p+5 \Rightarrow x=5+21N\),以上個數在範圍之下皆為10個,故共有60個數滿足題意

PS.  \(x\)為7的倍數必無法滿足題意,故不考慮




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0