Board logo

標題: 111全國高中職聯招 [打印本頁]

作者: Ellipse    時間: 2022-5-14 15:10     標題: 111全國高中職聯招

如附件~

很多考古題

附件: 03-5003數學科試題含答案(公告用).pdf (2022-5-14 15:10, 357.3 KB) / 該附件被下載次數 8986
https://math.pro/db/attachment.php?aid=6373&k=6feffab5e263845afb55de65eb684e06&t=1732254747
作者: bugmens    時間: 2022-5-14 15:17

選擇題
3.
若\(a\)、\(b\)為實數,則\(\sqrt{(4-b)^2+3^2}+\sqrt{(a-b)^2+a^2}+\sqrt{(4-a)^2+(3-a)^2}\)之最小值為何?
(A)\(4\sqrt{2}\) (B)\(5\sqrt{2}\) (C)\(2\sqrt{10}\) (D)\(3\sqrt{10}\)

4.
小明到畫廊賞畫,牆壁上懸掛一幅山水畫\(AB\),\(A\)點,\(B\)點分別離地4公尺,2公尺高,若小明的眼睛\(C\)離地1.5公尺高,則\(C\)離牆壁多遠時,他對該幅「山水畫」的視角\(\theta\)最大?
(A)\(\displaystyle \frac{\sqrt{5}}{3}\)公尺 (B)\(\displaystyle \frac{\sqrt{5}}{2}\)公尺 (C)\(\sqrt{5}\)公尺 (D)\(2\sqrt{5}\)公尺

5.
\(A,B,C\)分別為正立方體三稜的中點,則過\(A,B,C\)三點的平面與此正立方體的截痕形狀為何?
(A)六邊形 (B)五邊形 (C)四邊形 (D)三角形

右圖為一正立方體,\(A\)、\(B\)、\(C\)分別為所在的邊之中點,通過\(A\)、\(B\)、\(C\)三點的平面與此立方體表面相截,問下列何者為其截痕的形狀?
(A)直角三角形 (B)非直角三角形 (C)正方形 (D)非正方形的長方形 (E)六邊形
(105嘉義高中科學班,https://math.pro/db/thread-2874-1-1.html)

7.
求值\(\displaystyle \lim_{n\to \infty}\frac{(4n+1)^2+(4n+2)^2+(4n+3)^2+\ldots+(4n+3n)^2}{n^3}\)
(A)24 (B)33 (C)93 (D)279

12.
已知圓周上有8個不同的等分點,選出正確的選項:
(A)以這些點為頂點,可決定24個直角三角形
(B)以這些點為頂點,可決定24個鈍角三角形
(C)以這些點為頂點,可決定8個銳角三角形
(D)以這些點為頂點,可決定70個四邊形

設\(n\)為正整數,\(n\ge 3\)。
(1)自圓之內接正\(2n\)邊形的頂點任取三點為三角形的頂點,則可做成多少個銳角三角形?
(2)自圓之內接正\(2n+1\)邊形的頂點任取三點為三角形的頂點,則可做成多少個銳角三角形?
(103復興高中,https://math.pro/db/viewthread.php?tid=1892&page=2#pid10516)

填充題
5.
以之實數\(a>1\),正方形\(ABCD\)的面積為144,其中\(\overline{AB}\)與\(x\)軸平行,且\(A\)、\(B\)、\(C\)分別為函數\(y=log_a x\),\(y=2log_a x\),\(y=3log_a x\)圖形上的點,試求\(a^3+a^{-3}=\)   

6.
設\(f(x)=x^3+3x^2-4x-2\),\(g(x)=x^4+6x^3+5x^2-16x-2\),且\(\alpha,\beta,\gamma\)為\(f(x)=0\)的三個根,則\(\displaystyle \frac{1}{g(\alpha)}+\frac{1}{g(\beta)}+\frac{1}{g(\gamma)}=\)   
類似問題https://math.pro/db/viewthread.php?tid=807&page=1#pid1652
作者: Ellipse    時間: 2022-5-14 15:23

複選12
已知圓周上有8個不同的等分點,選出正確的選項:
(A)以這些點為頂點,可決定24個直角三角形
(B)以這些點為頂點,可決定24個鈍角三角形
(C)以這些點為頂點,可決定8個銳角三角形
(D)以這些點為頂點,可決定70個四邊形
[解答]
(A) ,(B): 請參考圖示
(C): C(8,2)-(A)的答案-(B)的答案
       =56-24-24=8
(D):C(8,4)=70

圖片附件: 正多邊形的三角形個數(直角三角形).jpg (2022-5-14 23:11, 522.16 KB) / 該附件被下載次數 3553
https://math.pro/db/attachment.php?aid=6382&k=74cf96a66cb7edb13771ece2cd426012&t=1732254747



圖片附件: 正多邊形的三角形個數(鈍角三角形).jpg (2022-5-14 23:11, 541.62 KB) / 該附件被下載次數 3583
https://math.pro/db/attachment.php?aid=6383&k=c3a74324591cc0c1bf6b72ef7fa2d2f3&t=1732254747


作者: 呆呆右    時間: 2022-5-14 15:44     標題: 計算2(1)

已知自然常數\(\displaystyle e=\lim_{n\to \infty}(1+\frac{1}{n})^n\),試寫出\(\displaystyle \frac{d}{x}(lnx)\)並證明之。
[解答]
\(\displaystyle \ln x = \int_1^x \frac{1}{t} \, dt \)
搭配微積分基本定理,即可得\( \ln x\)的微分為\( \frac{1}{x} \)

採用這個定義方式和思路,題目\(e\)的條件就用不到了
作者: Ellipse    時間: 2022-5-14 15:47

填8  (今年111中科實中,一模一樣題目)
所求面積
= [(√2)/2]² *π*2 +(√2)²
=π+2

圖片附件: 111全國高中職聯招填8.jpg (2022-5-14 15:47, 85.07 KB) / 該附件被下載次數 3524
https://math.pro/db/attachment.php?aid=6378&k=c6c1756b7bdc649a9c054e5a0d415ac2&t=1732254747


作者: Ellipse    時間: 2022-5-14 15:59

引用:
原帖由 呆呆右 於 2022-5-14 15:44 發表
\(\ln x = \int_1^x \frac{1}{t} \, dt \)
搭配微積分基本定理,即可得\( \ln x\)的微分為\( \frac{1}{x} \)

採用這個定義方式和思路,題目\(e\)的條件就用不到了
前面有給\(e\)的定義,出題老師的用意應該是要考生用導函數定義去做
不曉得直接用微積分基本定理會不會給分
作者: Ellipse    時間: 2022-5-14 21:48

#計算1
對所有的正整數\(n\),若數列\(<a_n>\)的前\(n\)項之和\(a_1+a_2+\ldots+a_n=4n^2\)恆成立,求\(\displaystyle \lim_{n\to \infty}(\sqrt{a_2+a_4+\ldots+a_{2n}}-\sqrt{a_1+a_3+\ldots+a_{2n-1}})\)之值為何?
[解答]
先算出a_n ,列式, 反有理化

圖片附件: 1652535685696.jpg (2022-5-14 21:48, 38.22 KB) / 該附件被下載次數 3554
https://math.pro/db/attachment.php?aid=6379&k=73296c995073745d75c374d71d6bd780&t=1732254747


作者: tsusy    時間: 2022-5-14 23:59     標題: 回覆 6# Ellipse 的帖子

計算2.(1) 的確像橢圓老師說的,出題者很可能有此意思

但題意條件不夠明確的情況下,就會不清楚是用哪些定義

以中學的觀點可能會比較接受 \( \ln x \) 是 \( e^x \) 的反函數

所以需要先知道或證明 \( e^x \) 的導函數還是 \( e^x \)
(中學觀點可以先接受有指數律,那就至少需要 \(\displaystyle \lim_{x\to 0} \frac{e^x -1}{x} = 1 \) )

如果連 \( e^x \) 的導函數也要證明,那很可能需要更一步的指數函數定義:

\( e^x = \displaystyle \lim_{n \to \infty} (1 + \frac{x}{n})^n \)

考試的時候,考生很難把握,什麼可以直接用、什麼需要證明才能使用
作者: cut6997    時間: 2022-5-15 00:07

1.帶入硬算
2.配成無2次式
3.將(4,3)分別對x=y和x=0作兩次鏡射
4.tan合角
5.延邊切
6.對稱方程
7.7n-4n
8.9的倍數
填充
1.微分
2.半角
3.排列
4.複數極式
5.解聯立
6.g(x)除f(x)得一次餘式,所求為f'(x)/f(x)
7.2^10-C(10,0)-C(10,1)-C(10,2)
8.如橢圓老師所解
9.判別式0,解聯立
作者: tony90233    時間: 2022-5-15 08:44     標題: 計算二-2

不曉得有無其他解法


圖片附件: 計算二-2.PNG (2022-5-15 08:44, 7.9 KB) / 該附件被下載次數 3996
https://math.pro/db/attachment.php?aid=6384&k=0a955ca621b6d785ccf523a8562887b8&t=1732254747


作者: BambooLotus    時間: 2022-5-15 08:53     標題: 回覆 10# tony90233 的帖子

直接把ln(1+x)的泰勒展開式寫出來就好
作者: tuhunger    時間: 2022-5-16 22:29     標題: 第一頁解析

忙中有錯, 請包含指教!

圖片附件: 111全國聯招A1.jpg (2022-5-16 22:29, 371.97 KB) / 該附件被下載次數 1845
https://math.pro/db/attachment.php?aid=6385&k=7033ca4a46b9bd62d00881bfc163e213&t=1732254747


作者: tuhunger    時間: 2022-5-16 22:30     標題: 第二頁解析

忙中有錯, 請包含指教!

圖片附件: 111全國聯招A2.jpg (2022-5-16 22:30, 513.64 KB) / 該附件被下載次數 1853
https://math.pro/db/attachment.php?aid=6386&k=39f972cf859442a514c1f7b80262559e&t=1732254747


作者: tuhunger    時間: 2022-5-16 22:31     標題: 第三頁解析

忙中有錯, 請包含指教!

圖片附件: 111全國聯招A3.jpg (2022-5-16 22:31, 441.86 KB) / 該附件被下載次數 1943
https://math.pro/db/attachment.php?aid=6387&k=94549cd5a569d7f35cf29bdc673566c0&t=1732254747


作者: swallow7103    時間: 2022-5-16 23:56     標題: 回覆 12# tuhunger 的帖子

第4題:
後面解法稍微改一下,用算幾不等式
\(  \frac{8x}{4x^2+5} =\frac{8}{4x+\frac{5}{x}} \)最大值發生在\( \displaystyle 4x+\frac{5}{x} \) 有最小值時。
由算幾不等式的等號成立條件,知\( \displaystyle 4x=\frac{5}{x} \) 因此 \( \displaystyle x=\frac{\sqrt{5}}{2} \)

第8題:
老師你的數字抄錯了喔,是3087!
另外考完一直在想,雖然可以用9的倍數來解這題,但若題目改問,此七位數可能為多少?
目前還沒想到暴力解以外的算法。
作者: tuhunger    時間: 2022-5-17 00:51     標題: 回覆 15# swallow7103 的帖子

感謝燕子老師,第8題筆誤的部分,有空再改

出這份考卷的教授,明顯中學數學沒問題,
但小學計算:100÷24≈4.2(分/題)…
希望這個版有教授來看,這樣的題目,
一定會犧牲掉有閱讀障礙的老師,
但這些老師解題能力不一定亞於其他人…
108課綱正也是這個問題,把素養能力出成考閱讀能力…
借此,希望有出題教授能看到,感恩




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0