Board logo

標題: 107師大附中 [打印本頁]

作者: 米斯蘭達    時間: 2018-5-2 12:26     標題: 107師大附中

拋磚引玉一下,題目感覺不難,但是記憶已經模糊了。

希望大家幫忙補充題目





[ 本帖最後由 米斯蘭達 於 2018-5-2 17:15 編輯 ]

圖片附件: IMG_20180502_141540.jpg (2018-5-2 14:18, 345.23 KB) / 該附件被下載次數 6482
https://math.pro/db/attachment.php?aid=4414&k=b8c493ed062ac22706cc8e18a9158e55&t=1732316296



圖片附件: C47D86A5-F70C-417B-A2B5-794176851289.jpeg (2018-5-2 17:15, 243.85 KB) / 該附件被下載次數 6274
https://math.pro/db/attachment.php?aid=4416&k=8f9dfa5b3c92bdb22ac773c5c68a179e&t=1732316296


作者: pces51301    時間: 2018-5-2 20:49

9.  
\( 1\times 3\times 7\times 9\times 11\times 13\times 17\times 19\times \ldots \times111\times 113\times 117\times 119\)之末三位數為何?

10.
\(3^{2018}\)之末三位數為何?

附件: [答案出爐] 107師大附中數學科參考答案.pdf (2018-5-2 20:49, 364.95 KB) / 該附件被下載次數 8492
https://math.pro/db/attachment.php?aid=4417&k=78c4224cc484450bec9efc3871827286&t=1732316296
作者: laylay    時間: 2018-5-3 07:40     標題: 回復 2# pces51301 的帖子

9.
每四個一組 k=0..11 ,  設 k(k+1)=2j

  [(10k+5)-4] [ (10k+5)-2] [ (10k+5)+2 ] [ (10k+5)+4 ]=[(10k+5)^2-4] [(10k+5)^2-16]
=(10k+5)^4-20(10k+5)^2+64=(100k^2+100k+25)(100k^2+100k+5)+64=(200j+25)(200j+5)+64=1000p+189
189^12=(11-200)^12=11^12-12*11^11*200+1000q=(1+10)^12-2400(10r+1)+1000q=1+c(12,1)*10+c(12,2)*100-400+1000s
=1000t+321  所求=321

10.   = -(1-10)^1009=-1+1009*10-1009*1008/2*100+1000n=-1+90-600+1000m=1000(m-1)+489 , 所求=489

[ 本帖最後由 laylay 於 2018-5-3 12:38 編輯 ]
作者: yi4012    時間: 2018-5-3 12:21     標題: 回復 1# 米斯蘭達 的帖子

第二題分母n的次方應該是2次,或是裡面是4次
不然答案為0
作者: 米斯蘭達    時間: 2018-5-3 15:40

引用:
原帖由 yi4012 於 2018-5-3 12:21 發表
第二題分母n的次方應該是2次,或是裡面是4次
不然答案為0
印象很深分母的n次方是3,那應該是裡頭的次方有錯
作者: pces51301    時間: 2018-5-7 22:00     標題: 回復 3# laylay 的帖子

了解~~謝謝您!
作者: lyingheart    時間: 2018-5-11 08:19

圓 \( O \) 的圓心為 \( (0,0) \) ,半徑為 \( 1 \) ,
圓 \( A \) 的圓心為 \( (a,0) \) ,\( 0<a<1 \) ,與圓 \( O \) 內切於 \( (1,0) \) ,
圓 \( B \) 的圓心為 \( (-b,0) \) ,\( 0<b<1 \) ,與圓 \( O \) 內切於 \( (-1,0) \) ,
且圓 \( A \) 與圓 \( B \) 外離;令 \( L \) 表示圓 \( A \) 與圓 \( B \) 的根軸。
今有一圓 \( P \),與圓 \( O \) 內切,與圓 \( A \) 外切且與 \( L \) 相切;
另有一圓 \( Q \),與圓 \( O \) 內切,與圓 \( B \) 外切且與 \( L \) 相切。
試證:圓 \( P \) 與圓 \( Q \) 半徑相等。

圖片附件: 107-2-2.png (2018-5-11 08:19, 32.04 KB) / 該附件被下載次數 5460
https://math.pro/db/attachment.php?aid=4444&k=028ee557be25c264ee6e3738aa2248dd&t=1732316296


作者: lyingheart    時間: 2018-5-12 23:29

13
平面上兩向量 \( (1,2) \) 與 \( (1,-1) \),今從原點出發,每步只能選擇前述兩向量其中之一,且不走到 \( x \) 軸下方,則走到 \( (12,0) \) 的方法有幾種?
14
兩多項式 \( f(x)=x^3-4x^2+x-3 \) 與 \( g(x)=x^4-2x^3-6x^2-7x-1 \) ;若 \( \alpha , \beta , \gamma \) 為 \( f(x)=0 \) 的三根,求
\( \displaystyle \frac{1}{g(\alpha)}+\frac{1}{g(\beta)}+\frac{1}{g(\gamma)}=? \)

16
空間中一平面 \( E:x+2y+2z=9 \),上面一個圓 \( C \) ,圓心為 \( (1,2,2) \) ,且通過點 \( (3,3,0) \) 。
若圓 \( C \) 上一點 \( P \) 的座標為 \( (a,b,c) \) ,問 \( a^2+bc \) 的最小值為何?
作者: laylay    時間: 2018-5-13 11:35     標題: 填充

13.   14.

[ 本帖最後由 laylay 於 2018-5-13 14:52 編輯 ]

圖片附件: 1526182542131.jpg (2018-5-13 11:35, 550.8 KB) / 該附件被下載次數 5812
https://math.pro/db/attachment.php?aid=4449&k=e9e5b41cdf79ad4cbcceb4972627e905&t=1732316296



圖片附件: 1526187629961.jpg (2018-5-13 12:59, 627.62 KB) / 該附件被下載次數 5622
https://math.pro/db/attachment.php?aid=4451&k=568bb9a90b5552a1c227ade6f23fe072&t=1732316296



圖片附件: 1526194240604.jpg (2018-5-13 14:52, 573.72 KB) / 該附件被下載次數 5496
https://math.pro/db/attachment.php?aid=4452&k=0e0f3ee2ba1972b01ac9e835b74950a9&t=1732316296


作者: laylay    時間: 2018-5-13 15:31     標題: 填充

16.  有人可以來算一下最大值嗎?        有人可以來算一下最大值嗎?

[ 本帖最後由 laylay 於 2018-5-13 15:59 編輯 ]

圖片附件: 1526197240808.jpg (2018-5-13 15:39, 627.29 KB) / 該附件被下載次數 5550
https://math.pro/db/attachment.php?aid=4454&k=1af9d5a5c3319dd433ba698147445b4d&t=1732316296


作者: laylay    時間: 2018-5-13 21:58     標題: 回復 7#

回復 7# lyingheart 的帖子

[ 本帖最後由 laylay 於 2018-5-13 21:59 編輯 ]

圖片附件: 1526220033847.jpg (2018-5-13 21:59, 614.97 KB) / 該附件被下載次數 4635
https://math.pro/db/attachment.php?aid=4457&k=ef31cafac1ccdde8c20b22f66313dfdf&t=1732316296


作者: lyingheart    時間: 2018-5-14 07:55     標題: 回復 11# laylay 的帖子

建議最後"同法可得"之後的文字與其寫了一堆補充說明,不如再列出幾個式子,然後我相信考試的時候不會真的去算,但是可以直接寫出結論。
至於你要問的最大值,應該是 \( \displaystyle \frac{27}{2}+2\sqrt{2} \)
作者: laylay    時間: 2018-5-14 12:18     標題: 回復 12# lyingheart 的帖子

謝謝,我最後所寫的 "其中......c" 刪掉即可,圖對y軸作對稱後Q(b,0),P(-a,0),與原P(a,0),Q(-b,0)就只是a,b 互換的差別而已,
當然半徑就會由(ab)/(a+b)變為(ba)/(b+a),重新為Q列式有些花時間
而且您只給最大值答案,我想大家會對您的過程更感興趣吧 !
既然您忙,那我來寫.......
16.   b+c=(9-a)/2,   b^2+c^2=18-a^2
由(b^2+c^2)(1^2+1^2)>=(b+c)^2 => (18-a^2)*2>=((9-a)/2)^2 =>  1-2ㄏ2<=  a <=1+2ㄏ2 ,  a=1+2ㄏ2 時 a^2+bc有最大值 27/2+2ㄏ2

[ 本帖最後由 laylay 於 2018-5-15 11:13 編輯 ]
作者: lyingheart    時間: 2018-5-16 08:02

沒甚麼特別的,還是用參數式
只是一般在 \( xy \) 平面上,我們用 \( (h+r\cos{\theta},k+r\sin{\theta}) \) 當成參數式,
但這個可以表示為 \( (h,k)+\cos{\theta}(r,0)+\sin{\theta}(0,r) \)
所以只要找到對應的 \( (r,0) \) 和 \( (0,r) \) 就好。




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0