Board logo

標題: 107中正高中 [打印本頁]

作者: Almighty    時間: 2018-4-26 23:17     標題: 107中正高中

淺層記憶...8題填充(+6題計算)
計算交給專業的提供

[ 本帖最後由 Almighty 於 2018-4-29 23:22 編輯 ]

圖片附件: S__40370210.jpg (2018-4-26 23:17, 226.7 KB) / 該附件被下載次數 7070
https://math.pro/db/attachment.php?aid=4372&k=7c5b2dbf461bf5705e74f3a0ff91f88f&t=1732338006



附件: 107中正高中.pdf (2018-4-29 23:22, 249.06 KB) / 該附件被下載次數 10479
https://math.pro/db/attachment.php?aid=4400&k=f08ad2f304c0532b5281f8df3c555c79&t=1732338006
作者: Sandy    時間: 2018-4-27 06:57     標題: 回復 1# Almighty 的帖子

補充一題計算
f(x)為整係數三次多項式,三次方係數為1,三根為α= ((-1+ sqrt(5))/(2))^((1)/(3))+ ((-1- sqrt(5))/(2))^((1)/(3))-1,β,γ。g(x)=f(x)*q(x)-x+6    [g(x)有給一個明確的多項式,睡一覺起來就忘了!]
(1)求f(x)=?  (2)(1)/(g(α))+(1)/(g(β))+(1)/(g(γ))

圖片附件: tmp_12453-Screenshot_20180427-065557_11958231906572541862.jpg (2018-4-27 06:57, 30.69 KB) / 該附件被下載次數 6732
https://math.pro/db/attachment.php?aid=4374&k=62f9904aa429b4543e219dc39d9adf73&t=1732338006


作者: 米斯蘭達    時間: 2018-4-27 12:44

引用:
原帖由 Almighty 於 2018-4-26 23:17 發表
淺層記憶...8題填充(+6題計算)
計算交給專業的提供
補充一題計算
\(log_6(x+2)+log_6(5-x)=log_6(a-x)\)恰有一實根,其中\(a \in Z\),若滿足條件之\(a\)有\(m\)個,且此\(m\)個的總和為\(n\),求\((m,n)\)
作者: Christina    時間: 2018-4-27 20:57     標題: 回復 1# Almighty 的帖子

第二題印象中是問有幾組解@@
作者: Almighty    時間: 2018-4-27 21:12     標題: 回復 4# Christina 的帖子

是的,正整數解的個數
敘述用詞小細節沒注意到
我稍後更正~感謝
作者: jfy281117    時間: 2018-4-28 11:39     標題: 計算3

想請問a=14有算嗎?

因為在這個狀況下x是"二重根",概念上還是兩個根,但是這兩個根長的一樣,這樣有符合題意要求嗎?

下面連結是a變動時,二次函數解的情形,同時還需要只有一根落在虛線範圍內才符合題意。
https://imgur.com/a/uqfHyQF

圖片附件: IMG_0322.JPG (2018-4-28 14:05, 855.03 KB) / 該附件被下載次數 6691
https://math.pro/db/attachment.php?aid=4379&k=bb5412dd3f6510bec0f2c9d668729bd7&t=1732338006


作者: thepiano    時間: 2018-4-28 17:46     標題: 回復 6# jfy281117 的帖子

重根 "不算" 恰有一實根
作者: liusolong    時間: 2018-4-29 01:59

第5題,我看到的是角DAE與另外兩個角,沒有說相同
作者: laylay    時間: 2018-4-29 08:00

5.
可導公式 : 令 角BAC=CAD=DAE=Q   ,  a=BC=3 , b=CD=4 , c=DE=8    ,   AB=at , AD=bt , AC=bs , AE=cs
由 aBAD/aCAE=(1/2*ba*t^2)/(1/2*bc*s^2)=(b+a)/(b+c) => s^2=a(b+c)/[c(b+a)]*t^2
再由 cos Q =(a^2*t^2+b^2*s^2-a^2)/(2atbt)=(s^2+t^2-1)/(2st)  =>  t^2=c(b+a)/(ac-b^2) ,  s^2=a(b+c)/(ac-b^2)
所求=(bs)(bt)/2*sin Q * (a+b+c)/b = bst(a+b+c)/2*ㄏ[4s^2*t^2-(s^2+t^2-1)^2]/(2st)
       =b(a+b+c)/[4(ac-b^2)]*ㄏ[(b+a)((b+c)(3ac-b(a+b+c))]  =  45/2*ㄏ7

[ 本帖最後由 laylay 於 2018-4-30 11:26 編輯 ]
作者: Carl    時間: 2018-4-29 11:40

計算證明題補充一些印象中的部分。
若無誤再麻煩Almighty老師幫忙新增

2.印象中g(x)=x^4+4x^3+9x^2+10x+8
6.黃金矩形是一個長和寬的比為黃金比例的矩形。下列方法可以造出黃金矩形:
  在一正方形ABCD中,將AD折至BC可得一折線EF ,連接ED。
  將CD折至DE,可得折線交BC於M,過M作AB平行線交AD於N。
  則四邊形NMCD為黃金矩形。請用國中方法證明。

附件: 107中正高中補充.pdf (2018-4-29 11:40, 167.69 KB) / 該附件被下載次數 9439
https://math.pro/db/attachment.php?aid=4394&k=9506de124315ce574582eb78c750e0a1&t=1732338006

圖片附件: 1.jpg (2018-4-29 11:40, 328.01 KB) / 該附件被下載次數 6400
https://math.pro/db/attachment.php?aid=4395&k=37e438454d3f4cdd2d1eecb5c8dd4f90&t=1732338006


作者: Almighty    時間: 2018-4-29 23:21     標題: 回復 10# Carl 的帖子

感謝提供,已整理並新增進去
借用您的圖提供參考~THX
作者: jim1130lc    時間: 2018-5-2 23:43     標題: 官方提供的題目

詳如附件

附件: 107中正高中(官方).pdf (2018-5-2 23:52, 443.78 KB) / 該附件被下載次數 8216
https://math.pro/db/attachment.php?aid=4419&k=b6e914ad09cee58afe70c2f072767fb6&t=1732338006
作者: g112    時間: 2018-5-3 20:20

想請教一下第一題

除了設\(x=a+bi\)帶入驗證外有沒有比較好的方法去說明他沒有虛根

謝謝
作者: Ellipse    時間: 2018-5-3 21:36

引用:
原帖由 g112 於 2018-5-3 20:20 發表
想請教一下第一題

除了設x=a+bi帶入驗證外有沒有比較好的方法去說明他沒有虛根

謝謝
只要畫圖就知道範圍解喔
作者: 小姑姑    時間: 2018-5-4 01:37     標題: 請教填充第4題

阿正與另外3位男生3位女生共7人站成一排,若阿正不站兩側,且3位女生中恰有2位女生相鄰,請問共有幾種排法?
作者: thepiano    時間: 2018-5-4 07:40     標題: 回復 15# 小姑姑 的帖子

填充第 4 題
四男三女排成一列,恰有二女相鄰
(♀♀)♂♀
在女生產生的三個間隔中,插入三男,有 H(3,3) = 10 種方法
(♀♀)和♀可交換,三女排列,四男排列
計有 10 * 2 * 3! * 4! = 2880 種方法

阿正以外的三男三女排成一列,恰有二女相鄰
(♀♀)♂♀
在女生產生的三個間隔中,插入二男,有 H(3,2) = 6 種方法
(♀♀)和♀可交換,三女排列,三男排列
計有 6 * 2 * 3! * 3! = 432 種方法

阿正以外的三男三女排成一列,恰有二女相鄰
阿正排最左邊或最右邊有 432 * 2 = 864 種方法

所求 = 2880 - 864 = 2016 種方法
作者: g112    時間: 2018-5-4 11:37

引用:
原帖由 Ellipse 於 2018-5-3 21:36 發表

只要畫圖就知道範圍解喔
實數解的部分我ok,我想請教的是有沒有可能有虛數解 (虛數解沒辦法畫圖看吧=.=)

畢竟題目只問解方程式,沒說 x 是實數
-------------------------
找到解釋了,有可能有複數解,詳細參考 http://www.shs.edu.tw/works/essay/2011/03/2011032516502838.pdf

結論:題目沒出好=.=

[ 本帖最後由 g112 於 2018-5-5 00:33 編輯 ]




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0