標題:
若a,b為非零複數,滿足|a+b|=|a-b|,則a/b必在虛軸上.
[打印本頁]
作者:
P78961118
時間:
2017-5-18 13:29
標題:
若a,b為非零複數,滿足|a+b|=|a-b|,則a/b必在虛軸上.
請教各位老師一題
若a,b為非零複數,滿足|a+b|=|a-b|,則a/b必在虛軸上.
說明是這樣: 因為|a+b|=|a-b|,所以a,b必垂直,得a/b必在虛軸上
請問說明是怎麼回事 無法理解
謝謝各位老師
作者:
weiye
時間:
2017-5-18 14:04
qq.png
(46.18 KB)
2017-5-18 14:11
((畫張圖,希望有幫助理解。))
然後來個另解,
\(\displaystyle \left|a+b\right|=\left|a-b\right|\)
\(\displaystyle \Rightarrow \left|a+b\right|^2=\left|a-b\right|^2\)
\(\displaystyle \Rightarrow \left(a+b\right)\overline{\left(a+b\right)}=\left(a-b\right)\overline{\left(a-b\right)}\)
\(\displaystyle \Rightarrow \left(a+b\right)\left(\overline{a}+\overline{b}\right)=\left(a-b\right)\left(\overline{a}-\overline{b}\right)\)
\(\displaystyle \Rightarrow a\overline{a}+a\overline{b}+\overline{a}b+b\overline{b}=a\overline{a}-a\overline{b}-\overline{a}b+b\overline{b}\)
\(\displaystyle \Rightarrow a\overline{b}=- \overline{a}b\)
因為 \(b\) 非零,
\(\displaystyle \Rightarrow \frac{a}{b}=- \frac{\overline{a}}{\overline{b}}\)
\(\displaystyle \Rightarrow \frac{a}{b}=- \overline{\left(\frac{a}{b}\right)}\)
且因為 \(a\) 非零,所以 \(\displaystyle \frac{a}{b}\) 為純虛數。
圖片附件:
qq.png
(2017-5-18 14:11, 46.18 KB) / 該附件被下載次數 4434
https://math.pro/db/attachment.php?aid=4093&k=74f73b890846db494670050772763547&t=1732210474
作者:
P78961118
時間:
2017-5-18 15:20
標題:
回復 2# weiye 的帖子
請教老師
是把複數當作向量看待嗎??
作者:
weiye
時間:
2017-5-18 17:16
標題:
回復 3# P78961118 的帖子
複數有實部跟虛部~
兩複數相加,就是「對應的實部相加、且虛部相加」,這跟向量的『 \(x\)分量相加、且\(y\)分量相加』是一樣的。
兩複數相減,就是「對應的實部相減、且虛部相減」,這跟向量的『 \(x\)分量相減、且\(y\)分量相減』是一樣的。
作者:
P78961118
時間:
2017-5-19 13:17
標題:
回復 4# weiye 的帖子
謝謝
歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/)
論壇程式使用 Discuz! 6.1.0